
LAGRANGIAN INTERSECTIONS AND THE SPECTRAL NORM IN
CONVEX-AT-INFINITY SYMPLECTIC MANIFOLDS

HABIB ALIZADEH, MARCELO S. ATALLAH, AND DYLAN CANT

Abstract. Given a compact Lagrangian 𝐿 in a semipositive convex-at-infinity symplec-
tic manifold𝑊, we establish a cup-length estimate for the action values of 𝐿 associated
to a Hamiltonian isotopy whose spectral norm is smaller than some ℏ(𝐿). When 𝐿
is rational, this implies a cup-length estimate on the number of intersection points.
This Chekanov-type result generalizes a theorem of Kislev and Shelukhin proving
non-displaceability in the case when𝑊 is closed and monotone. The method of proof
is to deform the pair-of-pants product on Hamiltonian Floer cohomology using the
Lagrangian 𝐿.

1. Introduction and main results

1.1. Introduction. Let (𝑊, 𝜔) be a symplectic manifold and 𝐿 ⊂ 𝑊 a closed Lagrangian
submanifold. Understanding when a Hamiltonian diffeomorphism 𝜙 can displace 𝐿,
and quantifying the intersections when it cannot, has been one of the driving forces
of symplectic topology ever since Arnol’d’s famous conjectures were formulated; see
[Arn65, Arn13]. Let us denote by Ham𝑐 (𝑊, 𝜔) the group of compactly supported
Hamiltonian diffeomorphisms, i.e., those diffeomorphisms 𝜙 which appear as the
time-one map 𝜙 = 𝜙1 of a compactly supported Hamiltonian isotopy 𝜙𝑡; recall that
this means the non-autonomous vector field 𝑋𝑡 generating 𝜙𝑡 is 𝜔-dual to an exact
one-form.
The Lagrangian version of one of the conjectures in the particular case of cotangent
bundles states the following:

Conjecture 1 (Arnol’d). For every compactly supported Hamiltonian diffeomorphism
𝜙 of 𝑇∗𝐿, the number of intersection points 𝜙(𝐿) ∩ 𝐿 is bounded from below by the
minimal number of critical points of a smooth function on 𝐿.

When the intersection is transverse, the conjectured lower-bound is replaced by the
Morse number of 𝐿, i.e., the minimal number of critical points of a Morse function on 𝐿.
In this direction, Gromov proves in his groundbreaking work [Gro85] the existence
of at least one intersection point of any closed exact Lagrangian 𝐿′ ⊂ 𝑇∗𝐿 with the
zero-section, and then sets 𝐿′ = 𝜙(𝐿) to conclude 𝜙(𝐿) ∩ 𝐿 ≠ ∅.
As stated, Conjecture 1 remains open; however, in a classic result [Hof85], Hofer proves
a slightly weaker version of the conjecture where the lower bound is replaced with one
plus the cup-length clK(𝐿) of 𝐿 with coefficients on a base field K, where:

clK(𝐿) = max{𝑘 | ∃ 𝑎1, . . . , 𝑎𝑘 ∈ 𝐻>0(𝐿;K) such that 𝑎1 ∪ · · · ∪ 𝑎𝑘 ≠ 0}.
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In another celebrated result [LS85], Laudenbach and Sikorav showed that, in the
transverse case, the number of intersection points is bounded from below by the total
Betti number of 𝐿.
A Lagrangian submanifold 𝐿 ⊂ 𝑊 is called weakly-exact if 𝜔(𝜋2(𝑊, 𝐿)) = 0. More
generally, 𝐿 is called rational If 𝜔(𝜋2(𝑊, 𝐿)) ⊂ R is a discrete subgroup, in which
case we denote the positive generator by 𝜌𝐿. When (𝑊, 𝜔) is a tame symplectic
manifold (see §2.9), Gromov shows in [Gro85, 2.3.B′3] that a weakly-exact Lagrangian
submanifold 𝐿 is non-displaceable. Moreover, if𝑊 is closed, the foundational works
[Flo88, Flo89a] of Floer imply that the number of intersection points 𝜙(𝐿) ∩ 𝐿 is at
least clK(𝐿) + 1 in general, and dim 𝐻∗(𝐿) when the intersection is transverse; see
also [Hof88]. Recently, this cup-length estimate has been established by [HP22] for
generalized cohomology theories.
Nonetheless, the existence of small displaceable Lagrangian tori in every symplectic
manifold indicates that a generalization of Conjecture 1 beyond the weakly-exact
setting requires additional hypothesis; one can, e.g., require that the Hamiltonian
diffeomorphism is close to the identity in some sense.
In this direction, Polterovich [Pol93] proved that if 𝐿 is rational and𝑊 is tame, then
the Hofer norm of any 𝜙 displacing 𝐿 is at least 𝜌𝐿/2; i.e., 𝜙(𝐿) ∩ 𝐿 ≠ ∅ provided
∥𝜙∥Hof < 𝜌𝐿/2; see [Hof90, LM95, Pol01] for discussion of the Hofer norm. This
result was sharpened by Chekanov [Che98], as follows. For an 𝜔-tame almost complex
structure 𝐽 on𝑊, define ℏ(𝐽, 𝐿) > 0 to be the minimal symplectic area of a non-constant
𝐽-holomorphic disk with boundary on 𝐿 or sphere in𝑊, and set:
(1) ℏ(𝐿) = sup

𝐽∈J
ℏ(𝐽, 𝐿),

where J denotes the space of 𝜔-tame almost complex structures on 𝑊; see §2.9.
Chekanov showed that if ∥𝜙∥Hof < ℏ(𝐿), then 𝜙(𝐿) ∩ 𝐿 ≠ ∅, and the number of
intersection points is bounded from below by dimF2 𝐻∗(𝐿;F2) provided the intersection
is transverse; see also [Liu05].
Spectral invariants provide a way of defining a spectral norm on Ham𝑐 (𝑊, 𝜔) which is
bounded from above by the Hofer norm. They were introduced in symplectic topology
by Viterbo [Vit92] via generating functions and, from a Floer theoretic perspective, by
Schwarz [Sch00] and Oh [Oh05a, Oh05b] (in the closed setting) and by Frauenfelder
and Schlenk [FS07] for convex-at-infinity symplectic manifolds (as defined in §2.1);
see also [HZ94, §5.4] and [BP94, §1.5.B]. In short, for a Hamiltonian system 𝜙𝑡, one
associates real-valued measurements 𝑐(𝛼, 𝜙𝑡) to classes 𝛼 in the (quantum) cohomology
of 𝑊; the definition is as a “min-max” action value of the Floer cohomology class
representing the image of 𝛼 under the map in [PSS96]; we review their construction
in §2.3. The spectral norm of a compactly supported Hamiltonian diffeomorphism 𝜙 is
defined by:
(2) 𝛾(𝜙) = inf

𝜙1=𝜙
−𝑐(1, 𝜙𝑡) − 𝑐(1, 𝜙−1

𝑡 ),

and it satisfies 𝛾(𝜙) ≤ ∥𝜙∥Hof .
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When (𝑊, 𝜔) is a closed weakly-monotone symplectic manifold, Kislev and Shelukhin
showed in [KS21, Theorem E] that if 𝛾(𝜙) < ℏ(𝐿) then 𝜙 does not displace 𝐿 and, if
𝜙(𝐿) ∩ 𝐿 is transverse, then #(𝜙(𝐿) ∩ 𝐿) ≥ dimF2 𝐻∗(𝐿;F2), sharpening Chekanov’s
result in this setting. The reason this improvement is possible boils down to the
observation that the Floer continuation maps:

𝔠 : CF(𝜙𝑡) → CF(𝜓𝑡)
are chain-homotopic to the multiplication operators:

𝜇2(𝑥,−) : CF(𝜙𝑡) → CF(𝜓𝑡)
given by taking the product with a cocycle 𝑥 ∈ CF(𝜓𝑡 ◦𝜙−1

𝑡 ) representing the image of
the unit under the PSS map.
In [KS21, Remark 50] it is suggested that the cup-length estimate for a suitable choice
of coefficient field K should hold whenever 𝛾(𝜙) < ℏ(𝐿); see also [Gon21]. Proving
such a cup-length estimate in the convex-at-infinity setting is the main goal of this
paper.

1.2. Main results. Let (𝑊, 𝜔) be a semipositive convex-at-infinity symplectic manifold
and 𝐿 a closed connected Lagrangian. The class of convex-at-infinity symplectic
manifolds contains all Liouville manifolds and compact symplectic manifolds; see §2.1.
Recall that, to a compactly supported Hamiltonian system 𝜙𝑡, one can associate an
action functional A𝜙𝑡 on the covering space of “capped” paths 𝑥 (𝑡) with endpoints of 𝐿;
see §2.2 for the definitions. The critical points of A𝜙𝑡 are in bijective correspondence
with the capped Hamiltonian chords.

Theorem 1.1. Suppose 𝜙 is a compactly supported Hamiltonian diffeomorphism such
that 𝛾(𝜙) < ℏ(𝐿). Then,

𝜙(𝐿) ∩ 𝐿 ≠ ∅.
Moreover, if the intersection points are isolated, then for all Hamiltonian system 𝜙𝑡 with
𝜙1 = 𝜙 there exists an interval of length 𝛾(𝜙) containing at least clF2 (𝐿) + 1 critical
values of A𝜙𝑡 .

When 𝐿 is a rational Lagrangian submanifold with rationality constant 𝜌𝐿 the action
value of a path is well-defined modulo 𝜌𝐿. Since 𝜌𝐿 ≤ ℏ(𝐿), Theorem 1.1 yields:

Corollary 1.2. Let 𝐿 be a compact rational Lagrangian submanifold. The cup-length
estimate #(𝜙(𝐿) ∩ 𝐿) ≥ clF2 (𝐿) + 1 holds for all compactly supported Hamiltonian
diffeomorphisms 𝜙 satisfying 𝛾(𝜙) < 𝜌𝐿.

When (𝑊, 𝜔) is a closed rational semipositive symplectic manifold our result sharpens
that of [Sch98, Theorem 1.1] by replacing the Hofer norm with the spectral norm.
More precisely, we obtain the following:

Corollary 1.3. Let (𝑊, 𝜔) be a compact semipositive symplectic manifold and suppose
that 𝜔(𝜋2(𝑊)) = 𝜌𝑊Z. If 𝜙 is a Hamiltonian diffeomorphism satisfying 𝛾(𝜙) ≤ 𝜌𝑊
then #Fix(𝜙) ≥ clF2 (𝑊) + 1.
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Proof. Consider (𝑊 ×𝑊, 𝜔 ⊕ −𝜔) with the diagonal Lagrangian Δ. We first show
that Δ is a rational with rationality constant 𝜌Δ = 𝜌𝑊 . Let 𝐴 be a relative class in
𝜋2(𝑊 ×𝑊, Δ) represented by:

𝑉 : (𝐷, 𝜕𝐷) → (𝑊 ×𝑊, Δ) given by 𝑧 ↦→ (𝑣1(𝑧), 𝑣2(𝑧)),
where 𝑣1 and 𝑣2 are the projections of 𝑉 onto the first and second factors. Note
that if 𝑧 ∈ 𝜕𝐷 then 𝑉 (𝑧) ∈ Δ; in particular, we have 𝑣1(𝑧) = 𝑣2(𝑧). Consider the
piecewise smooth sphere 𝑢 = 𝑣1#(−𝑣2) obtained by gluing 𝑣1 and 𝑣2 along their
common boundary (and reversing the orientation of 𝑣2). The symplectic area of 𝑢 in𝑊
equals the symplectic area of 𝑉 in𝑊 ×𝑊, hence 𝜌ΔZ ⊂ 𝜌𝑊Z. For the reverse inclusion,
observe that every smooth sphere decomposes as 𝑣1#(−𝑣2) where 𝑣1 |𝜕𝐷 = 𝑣2 |𝜕𝐷, and
the previous argument can be run in reverse to conclude 𝜌𝑊Z = 𝜌ΔZ, as desired.
Next, set Φ = id × 𝜙 and consider the Lagrangian submanifold Φ(Δ) of𝑊 ×𝑊. The
intersection points Φ(Δ) ∩ Δ correspond bijectively to the fixed points of 𝜙. We appeal
to the product formula for spectral invariants in [EP09, Theorem 5.1] to conclude that:

𝛾(Φ) = inf
Φ1=Φ

−𝑐(1,Φ𝑡) − 𝑐(1,Φ−1
𝑡 )

≤ inf
𝜙1=𝜙

−𝑐(1, 𝜙𝑡 × id) − 𝑐(1, 𝜙−1
𝑡 × id)

= inf
𝜙1=𝜙

−𝑐(1, 𝜙𝑡) − 𝑐(1, 𝜙−1
𝑡 ) = 𝛾(𝜙).

Hence, 𝛾(Φ) ≤ 𝛾(𝜙) ≤ 𝜌𝑊 = 𝜌Δ, and we can therefore apply Corollary 1.2 to obtain:
#Fix(𝜙) = #(Φ(Δ) ∩ Δ) ≥ clF2 (Δ) + 1 = clF2 (𝑊) + 1,

which concludes the proof of the corollary. □

1.3. Proof overview. Before delving into an overview of the proof of Theorem 1.1, let
us first examine a simpler case to illustrate the underlying principles in our approach,
while pointing to the difficulties that arise in the more general setting. Suppose that
𝐿 ⊂ 𝑊 is a closed weakly-exact Lagrangian submanifold with cup-length clF2 (𝐿) = 𝑘.
To prove the cup-length estimate it is enough to show that the action spectrum:

Spec(𝜙𝑡, 𝐿) = Crit(A𝜙𝑡)
has at least 𝑘 + 1 values (for any Hamiltonian system 𝜙𝑡 generating 𝜙). Indeed, the
weakly-exact condition implies that the action value of a chord is independent of the
choice of capping. In contrast, for rational 𝐿, the action A𝜙𝑡 is defined modulo 𝜌𝐿. In
the rational case one can still ensure the existence of at least 𝑘 + 1 Hamiltonian chords
by showing that action values belong to an interval of length at most 𝜌𝐿; this excludes
contributions of different cappings of the same chord.
To obtain a strictly decreasing sequence of 𝑘 + 1 action values 𝑎0 > · · · > 𝑎𝑘, it is
sufficient to have a chain of 𝑘 non-stationary Floer strips 𝑢1, . . . , 𝑢𝑘 with boundary on
𝐿; here non-stationary means the energy of the strip is non-zero, and chain means the
positive asymptotics of 𝑢 𝑗 equals the negative asymptotic of 𝑢 𝑗+1. See Figure 1 below
for an illustration of such a chain.
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Given such a chain, the sum of the energies of the 𝑢 𝑗 bounds the difference 𝑎0 − 𝑎𝑘.
Thus, if it is possible to construct chains of non-constant Floer strips satisfying a total
energy bound less than 𝜌𝐿, one obtains the desired chain of action values.
One way to conclude a non-constant Floer strip 𝑢 for the system 𝜙𝑡 relative the
Lagrangian 𝐿 is to require that 𝑢(0, 0) lies on a smooth cycle 𝑓 : 𝑃 → 𝐿 which is
disjoint from 𝜙1(𝐿). Such curves are used to define a cap-action of 𝑓 on the Lagrangian
Floer cohomology. In the weakly exact setting, well-known arguments using this cap-
action explain how to construct chains of Floer strips whose length is the cup-length;
we recall the arguments in §1.3.1.
The main difficulty in generalizing this argument is the bubbling of 𝐽-holomorphic
disks. For one, the bubbling phenomenon impedes us from defining Lagrangian Floer
cohomology and Lagrangian cap-action.
In §1.3.2 and §1.3.3 we explain how to construct chains of Floer strips of length 𝑘,
with total action bound 𝑎0 − 𝑎𝑘 ≤ 𝛾(𝜙𝑡). The approach in §1.3.2 is based on the
module action of Hamiltonian Floer cohomology on Lagrangian Floer cohomology
considered in [KS21]. One only considers Lagrangian Floer cohomology defined in
action windows smaller than the disk bubbling threshold. In §1.3.3, we explain how to
deform the pair-of-pants product on Hamiltonian Floer cohomology using a compact
Lagrangian in such a way which circumvents the need to consider Lagrangian Floer
cohomology entirely, while still concluding a configuration of strips as in Figure 1.

1.3.1. The Lagrangian cap-action in the weakly exact case. In the weakly-exact setting,
Lagrangian Floer cohomology HF(𝐿, 𝜙𝑡) is well-defined, since there is no disk bubbling;
see, e.g., [KS21]. The PSS isomorphism provides an identification:

PSS𝐿,𝜙𝑡 : 𝐻 (𝐿) → HF(𝐿, 𝜙𝑡).
Moreover, every bordism class Π of maps 𝑓 : 𝑃 → 𝐿 has a corresponding Lagrangian
cap action map:

capΠ : HF(𝐿, 𝜙𝑡) → HF(𝐿, 𝜙𝑡).
On the chain level, the map is defined by picking a representative 𝑓 of Π and
counting Floer strips 𝑢 : R × [0, 1] → 𝑊 satisfying 𝑢(R × {0}), 𝑢(R × {1}) ∈ 𝐿 and
𝑢(0, 0) ∈ 𝑓 (𝑃). The cap action is associative:

capΠ∩Π′ = capΠ ◦ capΠ′ ,

and is compatible with the PSS isomorphism:
capΠ (PSS𝐿,𝜙𝑡 (Π′)) = PSS𝐿,𝜙𝑡 (Π ∩ Π′);

see e.g., [LO96, §4] and [Flo89b] for associativity and, e.g., [PSS96, §3] and [Sch00,
§2.3] for compatibility with PSS. The weakly-exact open-string case is handled analo-
gously to the closed-string case.
It is a convenient fact that the cup-length in unoriented bordism is the same as
cup-length in singular cohomology with F2 coefficients; see [Tho54, Theorem III.2],
and, e.g., [Wil20, §3.4] and [BH81, Theorem B]. Therefore, there exist bordism classes
Π1, . . . ,Π𝑘 of maps 𝑓𝑖 : 𝑃𝑖 → 𝐿 of positive codimension, for 𝑖 = 1, . . . , 𝑘, such that the
intersection product Π1∩ · · · ∩Π𝑘 equals the point class [pt]. Becausethe codimension
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is ≥ 1, we can make the images of 𝑓𝑖 disjoint from 𝜙1(𝐿) ∩ 𝐿 (assuming the intersections
form an isolated set).
On the one hand, the cap action of the point class is non-trivial since:

cap[pt] (PSS𝐿,𝜙𝑡 ( [𝐿])) = PSS𝐿,𝜙𝑡 ( [pt] ∩ [𝐿]) = PSS𝐿,𝜙𝑡 ( [pt]).
On the other hand, by associativity, we have:

cap[pt] = capΠ1
◦ · · · ◦ capΠ𝑘

.

The non-triviality of the above chain of compositions implies, in particular, that there
exists a sequence of 𝑘 Floer strips with point constraints as illustrated in Figure 1.

𝛾1,+ 𝛾2,+ 𝛾𝑘,+𝛾1,− 𝛾2,− 𝛾𝑘,−· · ·

𝑓1(𝑃1) 𝑓2(𝑃2) 𝑓𝑘(𝑃𝑘)

Figure 1. A sequence of Floer strips with point constraints and uniformly
bounded energy converges-up-to-breaking to a sequence of Floer strips,
satisfying action bounds A𝜙𝑡 (𝛾 𝑗+1,−) ≤ A𝜙𝑡 (𝛾 𝑗,+) < A𝜙𝑡 (𝛾 𝑗,−).

The strict inequalities A𝜙𝑡 (𝛾 𝑗,−) < A𝜙𝑡 (𝛾 𝑗,+), for all 𝑗 ∈ {1, . . . , 𝑘}, follow from the
fact that each Floer strip is non-stationary because of the incidence constraint. Thus,
there are at least 𝑘 + 1 action values, which concludes the argument.

1.3.2. An algebraic approach. The approach in this section is heavily inspired by [KS21,
Theorem E]. It relies on defining Lagrangian Floer cohomology, along with zero
curvature operations, in an action window that is small enough to prevent bubbling yet
sufficiently large to detect cohomological information of the Lagrangian. While this
approach can likely be generalized to the convex-at-infinity setting, in this section we
restrict ourselves to the case where 𝐿 is a monotone Lagrangian of a closed symplectic
manifold (𝑊, 𝜔) since the tools required have been carefully defined in [KS21].
Given a Hamiltonian system 𝜙𝑡 and an 𝜔-compatible almost complex structure 𝐽, for
each interval 𝐼 of length |𝐼 | < ℏ(𝐽, 𝐿), let CF(𝜙𝑡, 𝐿; D) 𝐼 be the Floer complex generated
by capped (contractible) chords whose action values belong to the interval 𝐼; one
should suppose that the endpoints of 𝐼 are not action values of chords. For generic
perturbation data D, the differential is well defined since bubbling is prevented by the
narrow action window. We denote by HF(𝜙𝑡, 𝐿; D) 𝐼 the corresponding cohomology.
As in §1.3.1, it is possible to define a Lagrangian cap-action associated to a bordism
class Π. Depending on the action window, these maps could very well be trivial.
A new input compared to §1.3.1 is the following: to a cocycle 𝑧 ∈ CF(𝜓𝑡; D) in the
Hamiltonian Floer cohomlogy of action A𝜓𝑡 (𝑧) = 𝑐, there corresponds a multiplication
operation:

[𝜇(−, 𝑧)] : HF(𝐿, 𝜙𝑡; D) 𝐼 → HF(𝐿, 𝜓𝑡 ◦ 𝜙𝑡; D) 𝐼+𝑐+𝜖,
where 𝜖 > 0 is an error term related to the perturbation data D. In short, 𝜇(−, 𝑧)
is defined by counting rigid one-punctured Floer strips with Lagrangian boundary
conditions, whose ends are asymptotic to Hamiltonian chords of 𝜙𝑡 and 𝜓𝑡 ◦ 𝜙𝑡 and
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whose interior puncture is asymptotic to a one-periodic orbit of 𝜓𝑡 belonging to the
linear combination expressing 𝑧; see Figure 2.

𝑧 ∈ CF(𝜓𝑡; D)

CF(𝐿, 𝜙𝑡; D) CF(𝐿, 𝜓𝑡 ◦ 𝜙𝑡;D)
boundary conditions on 𝐿

Figure 2. The module action of Hamiltonian Floer cohomology on
Lagrangian Floer cohomology; see [KS21, §4.1].

The goal is to find an action interval 𝐼 of length less than ℏ(𝐿) on which composing 𝑘
times the restricted Lagrangian cap-action is a non-trivial operation, as this guarantees
the existence of a chain of 𝑘 Floer strips exactly as in §1.3.1.
Suppose 𝜙𝑡 is a Hamiltonian system with 𝛾(𝜙𝑡) < ℏ(𝐿). Essentially by the definition of
the spectral norm, there are cocycles 𝑥 ∈ CF(𝜙−1

𝑡 ; D) and 𝑦 ∈ CF(𝜙𝑡; D), representing
the unit elements, with actions:

𝑢 = A𝜙−1
𝑡
(𝑥) = 𝑐(1, 𝜙−1

𝑡 ) and 𝑣 = A𝜙𝑡 (𝑦) = 𝑐(1, 𝜙𝑡) and 𝑢 + 𝑣 = 𝛾(𝜙𝑡).
The idea is to prove that, for some interval 𝐼 of length < ℏ(𝐿), the following composition:

(3) [𝜇(−, 𝑦)] ◦ cap[pt] ◦ [𝜇(−, 𝑥)] : HF(𝐿, id; D) 𝐼 → HF(𝐿, id; D) 𝐼+𝛾(𝜙)+2𝜖

is non-trivial, and hence cap[pt] : HF(𝐿, 𝜙𝑡;D) 𝐼+𝑢+𝜖 → HF(𝐿, 𝜙𝑡;D) 𝐼+𝑢+𝜖 is non-trivial.
Note that cap[pt] = capΠ1

◦ · · · ◦ capΠ𝑘
by the associativity of the Lagrangian cap-action,

and once we know this 𝑘-fold composition is non-trivial, the argument proceeds exactly
as in §1.3.1. Therefore, it is enough to show that (3) is non-trivial in the specified
action windows. To this end, we recall the associativity relation:

[𝜇(−, 𝑦)] ◦ cap[pt] ◦ [𝜇(−, 𝑥)] = cap[pt] ◦ [𝜇(−, 𝜇2(𝑥, 𝑦))],
from [KS21, §5.1, (20)], where 𝜇2(𝑥, 𝑦) represents the unit class in CF(id; D). Fur-
thermore, Φ = [𝜇(−, 𝜇2(𝑥, 𝑦))] induces the interval shift map:

Φ : HF(𝐿, id; D) 𝐼 → HF(𝐿, id; D) 𝐼+𝛾(𝜙𝑡)+2𝜖.
To conclude the argument, we observe that the following diagram is commutative:

HF(𝐿, id; D) 𝐼 HF(𝐿, id; D) 𝐼+𝛾(𝜙𝑡)+2𝜖

𝐻 (𝐿) 𝐻 (𝐿),∩[pt]

where the top horizontal arrow is the composition cap[pt] ◦Φ and the vertical arrows are
the PSS morphisms. Moreover, if 𝐼 and 𝐼 + 𝛾(𝜙𝑡) + 2𝜖 both contain 0, then both vertical
maps are injective, and hence the top map is non-trivial, as desired. Thus the problem
boils down to finding an interval 𝐼 so that |𝐼 | < ℏ(𝐿) and so that 𝐼, 𝐼 + 𝛾(𝜙𝑡) + 2𝜖 both
contain 0. It is clear that a necessary and sufficient condition for this to hold is that
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𝛾(𝜙𝑡) < ℏ(𝐿). This concludes the sketch of the proof of Theorem 1.1 in the closed
monotone setting using the framework introduced by [KS21].

1.3.3. A moduli space approach. The approach to proving Theorem 1.1 adopted in this
paper is to deform the pair-of-pants operation on Hamiltonian Floer cohomology using
the compact Lagrangian 𝐿. The deformation is illustrated in Figures 3 and 4. The
details of the deformation argument are given in §2.5.
The crux of the matter is to construct curves with Lagrangian boundary condition
which contain conformally embedded strips with a large modulus, as in Figure 4. By
an appropriate compactness argument, one concludes the existence of chains of Floer
strips needed to prove Theorem 1.1; the argument proceeds as in §1.3.

𝛾∞

𝛾0 𝛾1

𝐿
pt

𝐿

𝛾0 𝛾1

pt

Figure 3. (left) Gluing the pair-of-pants onto a half-infinite cylinder;
(right) deforming the conformal structure of the resulting Riemann
surface.

𝐿

𝛾0 𝛾1

𝑓3(𝑃3)𝑓2(𝑃2)𝑓1(𝑃1)

Figure 4. Deforming the conformal structure, and splitting the point
constraints. The homological count of elements of such a deformed
pair-of-pants will equal 1 if the intersection of the bordism classes equals
the point class pt.

There is one subtlety in the proof of Theorem 1.1 which we explain here. The
arguments in §2.5 imply that for each Hamiltonian system 𝜙𝑡 with 𝜙1 = 𝜙 there is an
interval of length 𝛾(𝜙𝑡) containing at least clF2 (𝐿) + 1 action values. It is a standard
fact that if 𝜙′

𝑡 is another Hamiltonian system with 𝜙′
1 = 𝜙 then the action spectrums of

𝜙𝑡 and 𝜙′
𝑡 coincide up to a shift by a constant depending only on the Hamiltonian loop

𝜙′
𝑡 ◦ 𝜙−1

𝑡 ; see, for example, [KS21, Proposition 31].
Therefore, for all Hamiltonian systems 𝜙𝑡 generating 𝜙, it is possible to find a closed
interval 𝐼(𝜙′

𝑡) of length 𝛾(𝜙′
𝑡) containing clF2 (𝐿) + 1 action values of A𝜙𝑡 . The infimum

of 𝛾(𝜙′
𝑡) over 𝜙′

𝑡 equals the spectral norm 𝛾(𝜙). In the weakly-exact case the intervals
𝐼(𝜙′

𝑡) must remain in a fixed compact set (because 𝜙1(𝐿) ∩ 𝐿 is finite). Otherwise,
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one can exploit the periodicity of the action spectrum and shift 𝐼(𝜙′
𝑡) to ensure the

intervals do not drift off to infinity. In either case, a standard compactness argument
for shrinking intervals contained in a compact set ensures the existence of an interval
of length 𝛾(𝜙) containing clF2 (𝐿) + 1 action values.

1.4. Acknowledgements. First and foremost the authors wish to thank E. Shelukhin
for suggesting this project and providing valuable guidance. The authors also wish to
thank O. Cornea, P-A. Mailhot, and P. Biran for clarifying discussions. This work is
part of the first two authors’ Ph.D. theses under the supervision of E. Shelukhin. The
authors were supported in their research at Université de Montréal by funding from
the Fondation Courtois, the ISM, the FRQNT, and the Fondation J. Armand Bombardier.

2. Floer cohomology in convex-at-infinity symplectic manifolds

2.1. Convex ends. A convex end is a non-compact symplectic manifold modelled on the
positive half of the symplectization of a contact manifold; see [EG91], [CE12, §11], and
[Gin05, MS12, FS07, Lan13, Lan16]. Below, we define the class of symplectic manifolds
called convex-at-infinity described in §1.2. In §2.1.2, it is shown that every convex-
at-infinity manifold 𝑊 can be expressed as the completion of a compact symplectic
manifold Ω with contact type boundary 𝜕Ω (allowing 𝜕Ω = ∅); here contact type is
understood in the sense of [Wei79, McD91].

Ω

Figure 5. Every convex-at-infinity symplectic manifold can be presented
as the completion of a starshaped domain Ω. The characteristic foliation
of the boundary 𝜕Ω is the Reeb flow for some choice of contact form on
the ideal boundary 𝑌 .

2.1.1. Definition of a convex end. Let (𝑊, 𝜔) be a symplectic manifold. Suppose there
is a complete vector field 𝑍 whose time 𝑠 flow 𝜌𝑠 satisfies the following properties:
(i) for any sequence 𝑧𝑛 there is a sequence 𝑆𝑛 < 0 so that 𝜌𝑠𝑛 (𝑧𝑛) has a convergent

subsequence whenever 𝑠𝑛 < 𝑆𝑛,
(ii) there is a compact set 𝐾1 so that, if 𝜌𝑠𝑛 (𝑧𝑛) and 𝑧𝑛 converge, and 𝑧𝑛 is not in 𝐾1,

then 𝑠𝑛 is bounded from above,
(iii) (𝜌∗𝑠𝜔)𝑧 = 𝑒𝑠𝜔𝑧 holds for 𝑠 > 0 and 𝑧 outside a compact set 𝐾2.

Note that if 𝑍1 = 𝑍2 holds outside a compact set, and 𝑍1 satisfies the above properties,
then so does 𝑍2, and we say 𝑍1, 𝑍2 are equivalent. A convex end on𝑊 is an equivalence
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class of such vector fields 𝑍. If𝑊 is a compact symplectic manifold, then we can take
𝐾1 = 𝐾2 =𝑊, in which case the axioms are trivially satisfied for any vector field.
The flow by 𝑍 (outside 𝐾2) will be referred to as the Liouville flow.

2.1.2. Structural results about convex ends. Let 𝑉 be the open set of points in𝑊 lying
on trajectories of 𝑍 which pass through 𝐾𝑐1. Axioms (i) and (ii) ensure that 𝜌𝑠 defines a
free and proper R-action on 𝑉; the details of the argument are left to the reader.
It follows that 𝑉 → 𝑉/R is a smooth submersion to a manifold whose fibers are the
trajectories of 𝑍. We claim that 𝑉/R is a compact manifold. Indeed, pick a sequence
𝑧𝑛 in 𝑉 and choose a compact neighborhood 𝐾′

1 of 𝐾1 which contains 𝐾1 in its interior.
There is 𝑠𝑛 so 𝜌𝑠𝑛 (𝑧𝑛) ∈ 𝐾′

1, because the limit points of 𝜌𝑠(𝑧𝑛) as 𝑠 converges to −∞ are
non-empty, by (i), and must be contained in 𝐾1 by the properness established above.
Then 𝜌𝑠𝑛 (𝑧𝑛) has a convergent subsequence since 𝐾′

1 is compact. Thus 𝑉/R is compact.
A variant of the Ehresmann fibration theorem implies that 𝑉 → 𝑉/R is a fiber bundle
whose structure group is the group of translations on R. Thus 𝑉 → 𝑉/R admits a
section, denoted 𝜕Ω. It follows that 𝑍 is transverse to 𝜕Ω, and the flow map takes
𝜕Ω× [0,∞) onto a neighborhood of∞ for𝑊. Note that 𝜕Ω bounds a compact domain
Ω in𝑊, by axiom (i).
Replacing 𝜕Ω by 𝜌𝑠(𝜕Ω), we may assume from axiom (iii) that 𝜌∗𝑠𝜔 = 𝑒𝑠𝜔 holds on
the image of 𝜕Ω × [0,∞). The region 𝜕Ω × [0,∞) is symplectomorphic to the positive
half of a symplectization of 𝜕Ω with contact form 𝛼 = 𝜆 |𝜕Ω, where 𝜆 = 𝜔(𝑍,−). Let
us refer to such a domain Ω as starshaped.
The induced contact distribution on 𝑉/R is independent of Ω and the resulting contact
manifold is called the ideal contact boundary of𝑊.

2.1.3. Contact-at-infinity Hamiltonian systems. With respect to the convex end in §2.1,
a Hamiltonian system 𝜑𝑡 is said to be contact-at-infinity provided it is equivariant
with respect to the positive Liouville flow, i.e., 𝜑𝑡 ◦ 𝜌𝑠(𝑧) = 𝜌𝑠 ◦ 𝜑𝑡 (𝑧) for 𝑠 ≥ 0,
outside of a compact set. It follows that any Hamiltonian function generating 𝜑𝑡 is one-
homogeneous outside of a compact set, up to the addition of a function which is locally
constant outside of a compact set; here a function 𝑓 : 𝑊 → R is one-homogeneous if
𝑓 ◦ 𝜌𝑠(𝑥) = 𝑒𝑠 𝑓 (𝑥) holds for 𝑠 ≥ 0.
Since 𝜑𝑡 is equivariant with respect to the Liouville flow in the end 𝜕Ω × [0,∞), for
suitably large star-shaped domain, the induced flow on the ideal boundary is a contact
isotopy called the ideal restriction of the system 𝜑𝑡.

2.1.4. Reeb flow in the convex end. A starshaped domain Ω induces a function 𝑟 by
requiring that 𝑟 is 1-homogeneous outside of Ω and 𝑟 |𝜕Ω = 1. The function 𝑟 should
be extended smoothly to all of𝑊, in such a way that 𝑟 ≤ 1 holds on Ω.
The restriction of 𝜆 to 𝜕Ω defines a contact form 𝛼 for the ideal contact boundary. The
Reeb flow for 𝛼 is the ideal restriction of the Hamiltonian system generated by 𝑟.
Let 𝑓 be a smooth convex function so that 𝑓 (𝑥) = 𝑥 for 𝑥 ≥ 1, and 𝑓 (𝑥) = 0 for 𝑥 ≤ 0.
Consider 𝑓 (𝑟 − 𝑟0) + 𝑟0 as generating an autonomous Hamiltonian system, and let 𝑅𝛼𝑡
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denote the flow induced by 𝑋 𝑓 (𝑟−𝑟0)+𝑟0 . This system equals the identity on the region
where 𝑟 < 𝑟0 and equals the Reeb flow for 𝛼 on the region where 𝑟 ≥ 𝑟0 + 1.

2.2. Cappings and the Hamiltonian action functional. The Hamiltonian action functional
is defined on suitable a covering space of the space of contractible loops in𝑊 or paths
in𝑊 with endpoints on the Lagrangian 𝐿.

2.2.1. Cappings of chords and orbits. Every contractible loop or path 𝛾 can be joined
to a constant loop or path via a smooth map 𝑢 : [0, 1] × 𝑆 → 𝑊, where 𝑆 = R/Z or
𝑆 = [0, 1], so that (i) 𝑢(0, 𝑡) is constant, (ii) 𝑢(𝑠, 0), 𝑢(𝑠, 1) ∈ 𝐿 in the case 𝑆 = [0, 1],
and (iii) 𝑢(1, 𝑡) = 𝛾(𝑡). Such maps can be considered up to homotopy, and a homotopy
class [𝑢] is called a capping of 𝛾. The projection (𝛾, [𝑢]) ↦→ 𝛾 is a covering space.

2.2.2. The Hamiltonian action functional. Given a contact-at-infinity Hamiltonian
system 𝜑𝑡 one defines a Hamiltonian action functional on the covering space by:

(4) A𝜑𝑡
(𝛾, [𝑢]) ≔

∫ 1

0
𝐻𝑡 (𝛾(𝑡)) d𝑡 + A(𝛾, [𝑢]),

where 𝐻𝑡 is the unique normalized time-dependent family of smooth functions generat-
ing 𝜑𝑡; see §2.2.3 for the normalization conditions. It is well-known, and easy to check,
that the critical points of A𝜑𝑡

are lifts of contractible orbits or chords of the system 𝜑𝑡.
If 𝛾 is a critical point ofA𝜑𝑡

, then the fiber over 𝛾 is in bijection with the set 𝜋2(𝑊, 𝛾(0))
or 𝜋2(𝑊, 𝐿, 𝛾(0)). The action values attained on this fiber consist, up to a constant
depending on 𝛾, of the values 𝜔(𝜋2(𝑊)) ⊂ R or 𝜔(𝜋2(𝑊, 𝐿)) ⊂ R.

2.2.3. Normalization conditions. Throughout this paper we assume that𝑊 is connected.
We do not assume that the ideal boundary 𝑌 is connected, and for this reason we pick
a connected component in 𝑌 to be the distinguished component. This choice is only
used to define the normalization condition for Hamiltonian functions.
If (𝑊, 𝜔) is compact, say that 𝐻 ∈ 𝐶∞(𝑊,R) is normalized if 𝐻 has mean zero with
respect to the volume form 𝜔𝑛; if (𝑊, 𝜔) is non-compact (with a convex end), say that
𝐻 is normalized if 𝐻 is one-homogeneous in the distinguished end.
Crucially: any constant normalized function is zero.

2.3. Hamiltonian Floer cohomology. Let (𝑊, 𝜔) be a convex-at-infinity symplectic
manifold, and let 𝜙𝑡 be a compactly supported Hamiltonian system.
To define Hamiltonian Floer cohomology for 𝜙𝑡, its necessary to deform 𝜙𝑡 on the
non-compact end to make its orbits non-degenerate; we follow the approach of, for
example, [Sei08a, FS07, Rit13, Mai22] and consider systems of the form 𝑅𝛼𝜖𝑡 ◦𝜙𝑡, where
𝛼 is a contact form on the ideal contact boundary of𝑊 and 𝑅𝛼𝑠 denotes the time 𝑠 Reeb
flow, extended to the compact part of𝑊 as in §2.1.4.
Assume that 𝑅𝛼𝜖𝑡 = id on the support of 𝜙𝑡 and 𝜙−1

𝑡 , so that 𝜙𝑡 ◦ 𝑅𝛼𝜖𝑡 = 𝑅𝛼𝜖𝑡 ◦ 𝜙𝑡. If
𝜖 > 0 is not a period of a closed Reeb orbit, then the system 𝑅𝛼𝜖𝑡 ◦ 𝜙𝑡 will have its fixed
point contained in a compact subset of𝑊. A compactly supported perturbation 𝛿𝑡 will
ensure that the system 𝛿𝑡 ◦ 𝑅𝛼𝜖𝑡 ◦ 𝜙𝑡 has finitely many non-degenerate fixed points.
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Note that the class of systems of the form 𝛿𝑡 ◦ 𝑅𝛼𝜖𝑡 ◦ 𝜙𝑡 is unchanged if we permute the
order of the three terms 𝛿𝑡, 𝑅𝛼𝜖𝑡, 𝜙𝑡 (the perturbation term 𝛿𝑡 will change, but the class
of systems is preserved).
The Floer complex for the perturbed system is defined to be the F2-vector space:

CF(𝛿𝑡 ◦ 𝑅𝛼𝜖𝑡 ◦ 𝜙𝑡, 𝐽)
of semi-infinite sums of capped 1-periodic orbits of the perturbed system. The Floer
differential depends on a choice of almost complex structure 𝐽, and counts Floer
cylinders going from right-to-left as shown in Figure 6; see §2.3.4 for further discussion
of the choice of almost complex structure.
The sums are semi-infinite in the following sense: for any action value 𝑎, there are
only finitely many non-zero terms whose action is less than 𝑎. The cohomological
differential increases action, and hence the subspace of semi-infinite sums of orbits
whose action is at least 𝑎 is a subcomplex.

𝜕𝑠𝑢 + 𝐽 (𝑢) (𝜕𝑡𝑢 − 𝑋𝑡) = 0 input, 𝑥+output, 𝑥−

Figure 6. Cohomological convention for Floer cylinders.

The homology is denoted HF(𝛿𝑡 ◦ 𝑅𝛼𝜖𝑡 ◦ 𝜙𝑡). Counting continuation cylinders produces
maps HF(𝛿′𝑡 ◦ 𝑅𝛼𝜖′𝑡 ◦ 𝜙𝑡) → HF(𝛿𝑡 ◦ 𝑅𝛼𝜖𝑡 ◦ 𝜙𝑡) provided 𝜖′ ≤ 𝜖; see §2.3.3. One should
note that continuation maps are not supposed to preserve the action filtration.
The Floer cohomology of the system 𝜙𝑡 is defined as a limit over continuation maps:

HF(𝜙𝑡) = lim
𝜖→0

lim
𝛿→0

HF(𝛿𝑡 ◦ 𝑅𝛼𝜖𝑡 ◦ 𝜙𝑡).

By definition, the action of a cohomology class is given by the formula:
(5) A( [𝑥]) = sup

{
A(𝑥 + d𝛽) : 𝛽 ∈ CF(𝛿𝑡 ◦ 𝑅𝛼𝜖𝑡 ◦ 𝜙𝑡)

}
,

where A(∑ 𝑎𝑖𝑥𝑖) = min {A(𝑥𝑖) : 𝑎𝑖 ≠ 0}. For any element 𝔢 ∈ HF(𝜙𝑡), one can
consider its image 𝔢𝛿,𝜖 ∈ HF(𝛿𝑡 ◦ 𝑅𝛼𝜖𝑡 ◦ 𝜙𝑡) and take the action A(𝔢𝛿,𝜖). In §2.6, it is
shown that A(𝔢𝛿,𝜖) converges as 𝛿, 𝜖 converge to zero; we call this number themin-max
action value A𝜙𝑡 (𝔢) of the class 𝔢.
Standard continuation arguments produce canonical isomorphisms HF(id) → HF(𝜙𝑡)
which are coherent with respect to continuation maps. If 𝔢 ∈ HF(id), then the min-max
action value of the image of 𝔢 in HF(𝜙𝑡) is called the spectral invariant of 𝔢 and is
denoted 𝑐(𝔢, 𝜙𝑡).

2.3.1. Spectral norm for a compactly supported system. In §2.3.5 the distinguished
unit element 1𝜙𝑡 ∈ HF(𝜙𝑡) is recalled. The spectral norm of the system is defined by
the formula (2) in §1.1. It is proved in [Sch00, FS07] that this depends only on the
time-one map 𝜙1, in the case when𝑊 is aspherical. See also [Oh05a, Oh05b] for the
definition of the spectral norm in the presence of holomorphic spheres.
In any case, without appealing to these results, the spectral norm of a time-1 map 𝜙1
is defined to be the infimum of the spectral norms of all systems which generate 𝜙1.
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2.3.2. Floer differential. In general, if 𝜑𝑡 is a non-degenerate contact-at-infinity system
(e.g., the system 𝛿𝑡 ◦ 𝑅𝜖𝑡 ◦𝜙𝑡), one can form the vector space CF(𝜑𝑡, 𝐽) of semi-infinite
sums of capped contractible orbits. To define the Floer differential, one requires an
almost complex structure 𝐽 which is tamed by 𝜔 and Liouville-equivariant outside of a
compact set; see §2.9 for further discussion. Associated to this pair one considers the
moduli space M(𝜑𝑡, 𝐽) of Floer cylinders, as in Figure 6.
Because we are using the semipositive framework for ensuring compactness, as in
[HS95], we need to impose a few slightly technical conditions. First of all, we pick 𝐽
so that the moduli space M∗(𝐴, 𝐽) of simple parametrized holomorphic spheres is cut
transversally and the evaluation map:
(6) 𝑢 ∈ M∗(𝐴, 𝐽)/Aut(C) → 𝑢(∞) ∈ 𝑊
defines a pseudocycle of dimension 2𝑛 + 2𝑐1(𝐴) − 4 for every homology class 𝐴; see
[MS12, Chapter 6].
Consider now the evaluation map:
(7) (M(𝜑𝑡, 𝐽) × R × R/Z)/R →𝑊

given by (𝑢, 𝑠, 𝑡) ↦→ 𝑢(𝑠, 𝑡). We say that data 𝜑𝑡 is admissible for 𝐽 provided:
(i) 𝜑1 is non-degenerate,
(ii) M(𝜑𝑡, 𝐽) is cut transversally,
(iii) the evaluation map (7) is transverse to the pseudocycle defined by (6).

Let M𝑑 (𝜑𝑡, 𝐽) denote the 𝑑-dimensional component of the moduli space.
Define a differential on CF(𝜑𝑡, 𝐽) by the formula:
(8) 𝑑𝑥 =

∑
𝑦 𝑛(𝑦, 𝑥)𝑦,

where 𝑦 is required to have the induced capping, and:
𝑛(𝑦, 𝑥) = # {𝑢 ∈ M1(𝜑𝑡, 𝐽)/R : 𝑦 = 𝑢(−∞, 𝑡) and 𝑢(+∞) = 𝑥} mod 2;

the quotient by R is with respect to retranslations. The sum defining 𝑑𝑥 may be infinite;
however, it is semi-infinite in the sense considered above, and hence is a well-defined
element of the Floer complex.
As is usual in Floer theory, 𝑑2 = 0 holds by considering the non-compact ends of
the one-dimensional manifold M2(𝜑𝑡, 𝐽)/R; see, e.g., [Flo89b, Theorem 4], [HS95,
Theorem 5.1]. We briefly remark on a priori estimates needed in order for the 𝑑2 = 0
argument to work. One uses bubbling analysis and the semipositivity assumption
to ensure that 𝐶1 gradient bounds follow from energy bounds. The details of the
argument are given in the later sections §2.7 and §2.8.

2.3.3. Continuation maps. Let 𝜑𝑠,𝑡 be a path of contact-at-infinity systems, satisfying
(i) 𝜑𝑠,0 = id, and (ii) 𝜕𝑠𝜑𝑠,𝑡 = 0 for 𝑠 outside a compact interval [𝑠0, 𝑠1]. Denote by
𝑋𝑠,𝑡 ◦ 𝜑𝑠,𝑡 = 𝜕𝑡𝜑𝑠,𝑡 the generating vector field.
Associated to this continuation data, define M(𝜑𝑠,𝑡, 𝐽) to be the moduli space of
continuation cylinder 𝑢 solving:

𝜕𝑠𝑢 + 𝐽 (𝑢) (𝜕𝑡𝑢 − 𝑋𝑠,𝑡 (𝑢)) = 0.
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If 𝜑𝑠,𝑡 is non-positive at infinity, in the sense that its normalized generator 𝐻𝑠,𝑡 satisfies
𝜕𝑠𝐻𝑠,𝑡 ≤ 0 outside of a compact set, then M(𝜑𝑠,𝑡, 𝐽) satisfies an a priori energy bound;
the energy estimate is well-known, see §2.7.2 for related discussion.
Let us say that 𝜑𝑠,𝑡 is admissible continuation data provided:
(i) it is non-positive at infinity, in the above sense,
(ii) the endpoints 𝜑±,𝑡 are admissible for defining the Floer complex with 𝐽,
(iii) the moduli space M(𝜑𝑠,𝑡, 𝐽) is cut transversally.
(iv) the evaluation map:

(𝑢, 𝑠, 𝑡) ∈ M(𝜑𝑠,𝑡, 𝐽) ↦→ 𝑢(𝑠, 𝑡) ∈ 𝑊
is transverse to the simple 𝐽-spheres described in (6).
To such a path one associates a continuation map:

𝔠 : CF(𝜑+,𝑡, 𝐽) → CF(𝜑−,𝑡, 𝐽),
by counting the rigid continuation cylinders, going from right-to-left as in (8).
Consideration of the 1-dimensional component of M(𝜑𝑠,𝑡, 𝐽) proves 𝔠 is a chain map
with respect to the Floer differentials 𝑑±. The chain homotopy class of the map is
unchanged under homotopies of continuation data with fixed endpoints, which are
non-positive during the entire homotopy.
For details, see [Flo89b, Theorem 4], [HS95, Theorem 5.2], [Abo15, Lemma 6.13].
See [Rit09], [Can23, §2.2] for discussion in the context of contact-at-infinity systems.

2.3.4. Independence of the choice of almost complex structure. For most of our arguments
we use a fixed 𝜔-tame almost complex structure 𝐽; this simplifies notation while still
enabling us to prove our main result. We note that the spectral norm is independent
of the choice of 𝐽. Indeed, for two choices of admissible complex structures 𝐽, 𝐽′,
continuation isomorphisms can be defined between CF(𝜑𝑡; 𝐽) → CF(𝜑𝑡; 𝐽′), in a
way that preserves the min-max action value of the unit element. This continuation
argument is given in [HS95, Theorem 5.2] in the closed case. The convex-at-infinity
setting does not complicate the argument; sharp energy estimates for the continuation
cylinders are possible since the input and output systems coincide.

2.3.5. PSS and the unit element. The goal in this section is to construct the “unit
element” inHF(𝜑𝑡) when the ideal restriction of 𝜑𝑡 has a positive-at-infinity generating
Hamiltonian. Morally, the unit element is defined by considering continuation cylinders
from the identity to 𝜑𝑡, as in Figure 7.
One picks a generic path 𝜑𝑠,𝑡 so that 𝜑𝑠,𝑡 = 𝜑𝑡 for 𝑠 ≤ 𝑠0 and 𝜑𝑠,𝑡 = id for 𝑠 ≥ 𝑠1, and
so that 𝜕𝑠𝐻𝑠,𝑡 (𝑥) ≤ 0 holds for all 𝑠, for 𝑥 outside of a compact set. Associated to this
is the moduli space M(𝜑𝑠,𝑡, 𝐽) of continuation cylinders. Each element of the moduli
space has a removable singularities at the 𝑠 = +∞ end, and should be considered as
map 𝑢 : C →𝑊 via the reparametrization 𝑧 = 𝑒−2𝜋(𝑠+𝑖𝑡).
The resulting PDE has a Fredholm linearization, and, under similar genericity conditions
to avoid sphere bubbling, the count of rigid elements in M(𝜑𝑠,𝑡, 𝐽) defines a closed



LAGRANGIAN INTERSECTIONS AND THE SPECTRAL NORM 15

element in 1𝜑𝑡
∈ HF(𝜑𝑡, 𝐽) called the unit. The necessary compactness results follow

from the same considerations as those in §2.3.3. The unit element does not depend on
the particular choices (up to the addition of exact elements) for the same reason that
the continuation map is well-defined up to chain homotopy.
Standard gluing arguments show that the unit elements are natural with respect to
continuation maps.

𝜑𝑡 id

Figure 7. The unit is defined via a special kind of continuation cylinder;
the shaded region interpolates between 𝜑𝑡 and id.

2.4. pair-of-pants product. The pair-of-pants product between Floer cohomology groups
in compact symplectic manifolds is well-known; see for instance [PSS96, §3], [Sch95,
§5.5.1.3], and [Sei97b, §6].
Fix the pair-of-pants Σ to be CP1 with three punctures 0, 1,∞; see Figure 8.

Figure 8. pair-of-pants as CP1 with three punctures 0, 1,∞. Circles
around the punctures are oriented as the boundaries of cylindrical ends,
i.e., 0, 1 are positive punctures and ∞ is a negative puncture.

For any three systems 𝜑0,𝑡, 𝜑1,𝑡 and 𝜑∞
𝑡 , one can count elements of the moduli space

M(ℌ, 𝐽) of solutions to Floer’s equation where ℌ is a Hamiltonian connection over the
pair-of-pants as in §A.4. See also [MS12, §8] for details on Hamiltonian connections
and the associated moduli space M(ℌ, 𝐽).
The asymptotic form of ℌ, 𝐽 in cylindrical ends around the punctures is determined by
the three systems 𝜑0,𝑡, 𝜑1,𝑡 and 𝜑∞

𝑡 in such a way that solutions 𝑢 ∈ M(ℌ, 𝐽) satisfy
the usual Floer’s equation for the 𝑖th system in the 𝑖th cylindrical end.
If𝑊 is compact and semipositive, and ℌ is sufficiently generic, then the moduli space
M(ℌ, 𝐽) has a compact zero dimensional component; the count of points in this
component determines a map from HF(𝜑0,𝑡) ⊗ HF(𝜑1,𝑡) to HF(𝜑∞

𝑡 ); see §2.4.1. As
explained in greater detail in §2.4.2, this product sends 1𝜑0 ⊗ 1𝜑1 to 1𝜑∞, i.e., it
respects the unit elements coming from the PSS map.
The analogous product in convex-at-infinity manifolds is complicated by the need to
ensure a maximum principle holds; see [Rit13, §6], [Rit14, Rit16], [Abo15, §10.3]. As
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explained in §2.7.5, a maximum principle follows from an energy bound. The results
in §A.4.2 prove that the energy of 𝑢 ∈ M(ℌ, 𝐽) is given by a formula of the form:

(9) energy(𝑢) = A𝜑∞
𝑡
(𝛾∞) − A𝜑1,𝑡 (𝛾1) − A𝜑0,𝑡 (𝛾0) +

∫
𝑢∗𝔯,

where 𝛾𝑖 are the asymptotic orbits and 𝔯 is a “curvature” two-form on Σ ×𝑊 derived
from the connection ℌ. In the convex-at-infinity case, it is generally impossible to
bound the curvature term without suitable assumptions on the systems involved.
The strategy employed by this paper is to only consider connections ℌ which are flat,
i.e., which satisfy 𝔯 = 0. The upshot of this is that one obtains a priori energy bounds
for M(ℌ, 𝐽) in terms of the actions of the asymptotics; see §2.7.2 for more details.
The cost of using a flat connection is that the systems cannot be picked arbitrarily. In
§A.3, we explain how for any choice of contact-at-infinity systems 𝜑0,𝑡, 𝜑1,𝑡, there
is a flat connection ℌ on the pair-of-pants with 𝜑∞

𝑡 = 𝜑0,𝑡𝜑1,𝑡. In other words, if
the output system is the composite of the input systems, the resulting pair-of-pants
operation satisfies the energy estimate (9) with 𝔯 = 0; see §2.4.1 for the precise
statement.
Similar use of flat connections on pairs-of-pants is employed in [Sch00, §4.1] to prove
his spectral norm is sub-additive; see §2.4.3. The pair-of-pants constructed in [Rit13,
§6], for autonomous 𝜑0,𝑡 = 𝜑1,𝑡, also uses a flat Hamiltonian connection.
The paper [KS21] introduces a general construction of flat connections on Riemann
surfaces Σ by conformally embedding strips R × [0, 1] into Σ.
As shown in Figure 9, one embeds strips and requires that Floer’s equation appears
in the standard form on each strip; outside the strips one requires solutions are
holomorphic (i.e., no Hamiltonian term). In cylindrical ends near each puncture, the
conformally embedded strips are supposed to converge to strips R × [𝑡0, 𝑡1] where
[𝑡0, 𝑡1] is some sub-interval of R/Z.

input 𝜑0,𝛽0 (𝑡)

input 𝜑0,𝛽1 (𝑡)

concatenated system

Figure 9. Zero curvature connections on the pair-of-pants via the strip
technique of [KS21]. Here 𝛽𝑖 : [0, 1] → [0, 1] is a non-decreasing
surjective smooth function which is supported in a small sub-interval.

This construction can be encoded into the data (ℌ, 𝐽) and ℌ is easily seen to be a
flat Hamiltonian connection, by working in small enough coordinate charts where the
equation appears in the above form.
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The solutions to the PDE described in Figure 9 asymptotically satisfy Floer’s equation
for time-reparametrized systems near the 0 and 1 puncture, and satisfy Floer’s equation
for the appropriate concatenated system at the ∞ puncture.
Throughout our arguments, it is possible to use the construction of [KS21] to produce
flat Hamiltonian connections with desired asymptotic systems, alternatively, one can
use the methods in §A.3.4.

2.4.1. Definition of the pair-of-pants product. Let 𝜑0,𝑡, 𝜑1,𝑡, 𝜑
∞
𝑡 = 𝜑0,𝑡𝜑1,𝑡 be contact-

at-infinity systems with non-degenerate fixed points. The case relevant to our paper is
when the ideal restriction of 𝜑𝑖

𝑡 is 𝑅𝛼𝜖𝑡 and 𝜖 > 0 is smaller than the minimal 𝛼-Reeb
orbit. The systems need to be generic on the compact part of 𝑊 so that the Floer
complexes CF(𝜑𝑖

𝑡) are well-defined; see §2.3.2.
Let ℌ be a flat Hamiltonian connection on the pair-of-pants Σ whose monodromies are
given by 𝜑𝑖

𝑡. Abbreviate by ℌ + 𝛿 a compactly supported perturbation of ℌ.
One requires ℌ is compatible with a choice of cylindrical ends on the pair-of-pants, so
that 𝑢 ∈ M(ℌ + 𝛿, 𝐽) solves the standard Floer’s equation in the 𝑖th end:

𝜕𝑠𝑢 + 𝐽 (𝑢) (𝜕𝑡𝑢 − 𝑋 𝑖𝑡 (𝑢)) = 0,
where 𝑋 𝑖𝑡 is the generator of 𝜑𝑖

𝑡; see §2.7.1 for further discussion.
Associated to this data is the moduli space M(ℌ + 𝛿, 𝐽) of finite-energy solutions
to Floer’s equation on Σ. We require that 𝛿 is chosen generically so that this is cut
transversally and the natural evaluation map:

ev : M(ℌ + 𝛿, 𝐽) →𝑊

is transverse to the pseudocycle of simple 𝐽-holomorphic spheres; see §2.8.
Similarly to the definition of the continuation map, one counts the rigid elements in
M(ℌ + 𝛿, 𝐽) as defining a map HF(𝜑0,𝑡) ⊗HF(𝜑1,𝑡) → HF(𝜑∞,𝑡). Note that cappings
of the asymptotic orbits at 0 and 1 induce a capping of the orbit at ∞.
The energy estimate §9 implies that:

A𝜑∞ (𝛾∞) ≥ A𝜑0 (𝛾0) + A𝜑1 (𝛾1),
and standard compactness results imply the sums converge (recalling that we allow
semi-infinite sums). One shows via 1-dimensional parametric moduli spaces that the
resulting map is independent of the choice of perturbation 𝛿.

2.4.2. The product of the unit with itself is the unit. The goal in this section is to prove
that the unit elements constructed in §2.3.5 are compatible with the pair-of-pants
product. This result is well-known, at least in the compact case, and we simply sketch
the argument.
Perform monotone cut-offs of a flat Hamiltonian connection on the pair-of-pants in
the cylindrical ends of 0 and 1, but do not cut off at the ∞ puncture. This depends
on a cut-off parameter 𝑅, producing a connection ℌ(𝑅) with non-zero curvature. The
curvature is negative in a certain sense (this negativity would not hold if we cut off
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at the ∞ puncture). Most importantly, solutions to M(ℌ(𝑅), 𝐽) still satisfy a priori
energy bounds; see §2.7.2.
The count of rigid elements ofM(ℌ(𝑅), 𝐽) is considered as valued inCF(𝜑∞

𝑡 ). Standard
arguments (similar to those in the construction of the unit element) show that this count
defines a closed element. Deformation arguments using the parameteric construction
in §A.3.7 show that the cohomology class of this element is independent of 𝜑0,𝑡, 𝜑1,𝑡,
provided that 𝜑∞

𝑡 = 𝜑0,𝑡𝜑1,𝑡, (and also independent of 𝑅). Thus, we may suppose
that 𝜑0,𝑡 = 𝜑∞

𝑡 and 𝜑1,𝑡 = id. In this case the connection ℌ extends smoothly over
the 1 puncture. Considering CP1 \ {0,∞} as the infinite cylinder, one shows that
counting elements in M(ℌ(𝑅), 𝐽) is equivalent to counting the rigid elements of the
continuation cylinders used to define the unit in §2.3.5. Thus the count equals the unit.

𝜑0,𝑡

𝜑1,𝑡

𝜑∞
𝑡 𝑅

Figure 10. Cut-off of a flat connection on the pair-of-pants. One cuts
off from 𝜑0,𝑡 to id on an interval of fixed length, starting at a depth
depending on the parameter 𝑅.

Now take the limit 𝑅 → ∞ for the original systems 𝜑0,𝑡, 𝜑1,𝑡 and show that the
possible breakings are configurations of a rigid pair-of-pants, with two cappings coming
from the moduli spaces for the unit elements of 𝜑0,𝑡 and 𝜑1,𝑡. The desired result
then follows, since the limiting configurations are precisely those which say that the
pair-of-pants product of the two unit elements equals the unit element.

2.4.3. Sub-additivity of spectral norm. Suppose that 𝜙0,𝑡, 𝜙1,𝑡 are compactly supported
Hamiltonian systems on 𝑊. The results in §2.4.2 together with the energy identity
for pairs-of-pants imply that 𝑐(1, 𝜙0,𝑡 ◦ 𝜙1,𝑡) ≥ 𝑐(1, 𝜙0,𝑡) + 𝑐(1, 𝜙1,𝑡). The spectral
invariant is super-additive because we are using cohomological conventions; see §2.3.
A similar identity holds for the inverse systems, and we conclude the spectral norm
from (2) is sub-additive 𝛾(𝜙0,𝑡 ◦ 𝜙1,𝑡) ≤ 𝛾(𝜙0,𝑡) + 𝛾(𝜙1,𝑡).

2.5. Deforming the pair-of-pants product using a Lagrangian. In this section we explain
how to deform the pair-of-pants product using a compact Lagrangian. To begin, we
consider the following operation defined by counting half-infinite cylinders.
If 𝜑∞,𝑡 is a small perturbation of the identity, with a small positive slope, then one can
count half-infinite cylinders [0,∞)×R/Z with Lagrangian boundary conditions solving
Floer’s equation for 𝜑∞,𝑡. This defines an augmentation type map HF(𝜑∞,𝑡) → Λ.

Here, the Novikov ring Λ is the F2-algebra consisting of all semi-infinite sums
∑
𝑥𝑘𝑒

𝐴𝑘

where 𝐴𝑘 are areas of elements of 𝜋2(𝑊, 𝐿); the sums are semi-infinite in the sense



LAGRANGIAN INTERSECTIONS AND THE SPECTRAL NORM 19

that only finitely many 𝑘 have 𝜔(𝐴𝑘) ≤ 𝜆. We are primarily interested in the one-
dimensional subspaces Λ𝐴 = F2 ·𝑒𝐴 corresponding to the disk of area 𝐴. By construction,
the subspaces:

Λ<𝐴 =
⊕

𝐴′<𝐴 Λ𝐴′

define a filtration of Λ.
The energy of a solution 𝑢 to the equation defined in Figure 11 is given as:

(10) 𝐸(𝑢) =
∫ 1

0
𝐻𝑡 (𝑢(0, 𝑡))d𝑡 − A𝜑∞ (𝛾∞) + 𝐴,

where 𝐴 is area of the element of 𝜋2(𝑊, 𝐿) formed by gluing the cylinder to the chosen
capping of 𝛾∞. To obtain the relevant energy bound, we only define:
(11) 𝔞 : HF>𝑐+𝐴−ℏ(𝜑∞,𝑡) → Λ<𝐴,

where 𝑐 is a small number defined precisely in (14), and 𝐸(𝑢) < ℏ is sufficient to
preclude disk bubbling. To be precise, in this section we fix ℏ so that:
(12) 𝛾(𝜙𝑡) < ℏ < ℏ(𝐿),
where ℏ(𝐿) is defined in (1). Briefly, one only counts the solutions to Figure 11 where
the symplectic area of the disk formed is less than 𝐴 to define (11); see §2.5.1 for
further details.
A special role is played by Λ0, as it encodes the area of the contractible disk. Indeed, in
§2.5.1, it is shown that the augmentation HF>𝑐−ℏ(𝜑∞,𝑡) → Λ0 sends the unit element
to a non-zero element, provided 𝜑∞,𝑡 is a sufficiently small perturbation of the identity.

𝜕𝑠𝑢 − 𝐽 (𝑢) (𝜕𝑡𝑢 − 𝑋𝑡) = 0𝐿 𝛾∞pt

Figure 11. The augmentation HF(𝜑∞,𝑡) → Λ associated to a La-
grangian 𝐿 with a point constraint 𝑢(0, 0) = pt.

Now the pair-of-pants product enters the discussion.
Let 𝜑0,𝑡 = 𝛿0,𝑡 ◦𝑅𝜖𝑡 ◦𝜙−1

𝑡 and 𝜑1,𝑡 = 𝜙𝑡 ◦𝑅𝜖𝑡 ◦𝛿1,𝑡 be small perturbations of a compactly
supported Hamiltonian isotopy 𝜙𝑡 and its inverse, as in §2.3, and let 𝜑∞,𝑡 = 𝜑0,𝑡𝜑1,𝑡.
Then 𝜑∞,𝑡 is a small enough perturbation of the identity so that the augmentation
HF>𝑐−ℏ(𝜑∞,𝑡) → Λ0 sends the unit element to a non-zero element. The idea is to
precompose this augmentation with the pair-of-pants product:

HF>𝑎(𝜑0,𝑡) ⊗ HF>𝑏(𝜑1,𝑡) → HF>𝑐−ℏ(𝜑∞,𝑡)
for suitable negative constants 𝑎, 𝑏; see §2.5.2 for discussion of the precise choice of
constants 𝑎, 𝑏 and the relevance of the spectral norm.
Gluing the pair-of-pants to the half-infinite cylinder provides a chain level description
for the operation:
(13) HF>𝑎(𝜑0,𝑡) ⊗ HF>𝑏(𝜑1,𝑡) → Λ0.

The operation (13) can be defined in many ways, as explained in §2.5.3. The idea
is to use the gluing trick to show the operation is non-zero (by considering it as a
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composition), but then deform the PDE in the manner described in Figure 3. Via a
sufficiently large deformation, one concludes a sequence of Floer strips with large
modulus on 𝐿 and point constraints as shown in Figure 4; see §2.5.4. As explained
in §1.3, one can conclude multiple chords with endpoints on 𝐿, with varying actions,
thereby completing the proof of Theorem 1.1.
The rest of this section is concerned with the technical details of the argument.

2.5.1. Augmentation associated to a Lagrangian with a point constraint. In this section
we are concerned with the construction of the augmentation described above, in the
case when:

𝜑∞,𝑡 := 𝛿0,𝑡𝑅
𝛼
2𝜖𝑡𝛿1,𝑡,

where 𝛿𝑖,𝑡 are 𝐶∞ small perturbations and 𝜖 is a small enough positive number.
Let Ω(𝑟0) = {𝑟 ≤ 𝑟0} and 𝑅𝛼𝑠 , be as in §2.1.4. Suppose that 𝑟0 is large enough that 𝐿 is
contained in the interior of Ω(𝑟0). We also assume that the perturbations 𝛿𝑖,𝑡 are such
that the normalized Hamiltonians Δ𝑖,𝑡 which generate 𝛿𝑖,𝑡 vanish outside of Ω(𝑟0 + 1);
this is sufficient to ensure transversality of all non-constant Floer cylinders; see §2.6
for further discussion.
The normalized Hamiltonian generating 𝜑∞,𝑡 is given by:

𝐻𝑡 := Δ0,𝑡 + Δ1,𝑡 ◦ 𝑅𝛼−2𝜖𝑡𝛿−10,𝑡 + 2𝜖 𝑓 (𝑟 ◦ 𝛿−10,𝑡 − 𝑟0) + 2𝜖𝑟0;
see §2.6.2 for further details. By picking 𝜖 and Δ0,𝑡, Δ1,𝑡 sufficiently small we may
assume that:

(14)
∫ 1

0
max

𝑥∈Ω(𝑟0+1)
𝐻𝑡 (𝑥)d𝑡 =: 𝑐 < ℏ,

As explained above, this is sufficient to obtain an a priori energy bound for defining
the augmentation HF>𝑐−ℏ(𝜑∞,𝑡) → Λ0.
The augmentation map 𝔞 : HF>𝑐−ℏ(𝜑∞,𝑡) → Λ0 is defined on capped orbits by the
formula:

𝔞(𝛾∞) =
∑︁

𝑛(𝛾∞, 𝐴)𝑒𝐴,
where 𝑛(𝛾∞, 𝐴) is the number of rigid half-infinite cylinders 𝑢 as in Figure 11 such
that 𝑢#𝛾∞ has symplectic area 𝐴 ≤ 0, where 𝛾∞ denotes the capping. The resulting
Floer energy of the cylinder is given by (10) which is bounded by ℏ. Standard
arguments imply that this is a chain map, where Λ0 is considered as a complex with
zero differential.
To prove that the unit element is sent to 1 ∈ Λ0, we first need to show that the unit
element 1𝜑∞,𝑡

is represented in the HF>𝑐−ℏ(𝜑∞,𝑡) for Δ𝑖,𝑡 and 𝜖 sufficiently small. One
shows this by analyzing the action of the output of the PSS map.
More precisely, we claim that, for the fixed negative error 𝑐 − ℏ, we can pick Δ𝑖,𝑡, 𝜖
sufficiently small so that the unit element 1𝜑∞,𝑡

has action value greater than 𝑐 − ℏ.
Indeed, on chain level, 1𝜑∞,𝑡

is defined by counting the solutions to the PSS equation
described in §2.3.5; one can therefore estimate the minimal action of the output:

min action ≥ min𝑊×R/Z𝐻𝑡 + symplectic area of the PSS cylinder in Figure 7.
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The first term on the right converges to zero. If the sum is not greater than 𝑐 − ℏ < 0,
then the symplectic area must be uniformly negative. Then we eventually contradict
the non-negativity of the energy of the PSS cylinder, because:

0 ≤ energy ≤
∫
𝛾−

𝐻𝑡d𝑡 +
∫
R
max
𝑊

𝜕𝑠𝐻𝑠,𝑡 + symplectic area,

and the first two terms cannot be uniformly positive (as Δ𝑖,𝑡 and 𝜖 converge to zero),
and so the last term cannot be uniformly negative.
Having established that 1𝜑∞,𝑡

lives in the appropriate action window, it remains to show
that 𝔞 sends 1𝜑∞,𝑡

to 1 ∈ Λ0. To show this, one considers the moduli space M(𝜎, 𝜑∞,𝑡)
of cylinders described in Figure 12.

𝜕𝑠𝑢 − 𝐽 (𝑢) (𝜕𝑡𝑢 − 𝛽(𝜎 − 𝑠)𝑋𝑡) = 0𝐿 𝛾∞pt

Figure 12. Here 𝛽(𝑥) = 1 for 𝑥 ≥ 1 and 𝛽(𝑥) = 0 for 𝑥 ≤ 0. The
cylinders interpolate between the augmentation and the PSS equation
from Figure 7. Taking a limit 𝜎 → ∞ shows that the augmentation sends
the unit to 1 ∈ Λ0.

Combining the energy estimate for the augmentation cylinders with the energy estimate
for the PSS cylinders shows that, if Δ𝑖,𝑡 and 𝜖 are small enough, then the Floer energy
of the cylinders in Figure 12 is bounded above by ℏ + 𝐴, here 𝐴 is the symplectic area
of the 𝑢 (considered as a disk). The different symplectic areas split M(𝜎, 𝜑∞,𝑡) into
connected components.
The augmentation to Λ0 only considers the components where 𝐴 = 0, and so we
restrict our attention to this part of the moduli space. Then, if 𝜎 is suficiently
negative, the only elements of M(𝜎, 𝜑∞,𝑡) are the constant 𝐽-holomorphic disks.
Arguing similarly to [MS12, §9.2], one thinks of the union of the index 0 components
Mpara =

⋃
𝜎M(𝜎, 𝜑∞,𝑡) as a parametric moduli space; since there is a unique constant

𝐽-holomorphic disk satisfying the point constraint, the fibers over 𝜎 < 0 consists of
a single point. It follows that, for generic compactly-supported perturbations of the
parametric equation,Mpara → R is smooth map between one-manifolds, and the fibers
over generic 𝜎 > 0 represent the non-trivial class in the unoriented bordism group of
0-dimensional manifolds; in other words, the F2-valued counts of the zero symplectic
area component of M(𝜎𝑘, 𝜑∞,𝑡) is exactly 1 for generic 𝜎.
Taking the limit 𝜎 → ∞, and applying standard compactness and gluing arguments,
one concludes that 𝔞 takes the unit element in HF>𝑐−ℏ(𝜑∞,𝑡) to 1.

2.5.2. Relevance of the spectral norm condition. The pair-of-pants operation defined in
§2.4 respects the action filtrations and induces a morphism:
(15) HF>𝑎(𝜑0,𝑡) ⊗ HF>𝑏(𝜑1,𝑡) → HF>𝑎+𝑏−𝜌1 (𝜑∞,𝑡);
the key is the energy estimate 𝐸 ≤ A(𝛾∞) − A(𝛾0) − A(𝛾1) + 𝜌1, where 𝜌1 > 0 is a
small error term due to perturbing a flat connection; see §2.7.2.
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Thus, if 1𝜑0,𝑡 ∈ HF>𝑎(𝜑0,𝑡) and 1𝜑1,𝑡 ∈ HF>𝑏(𝜑1,𝑡), and 𝑎 + 𝑏 − 𝜌1 > 𝑐 − ℏ, composing
(15) with the augmentation 𝔞 : HF>𝑐−ℏ(𝜑∞,𝑡) → Λ0 yields a non-trivial product:
(16) HF>𝑎(𝜑0,𝑡) ⊗ HF>𝑏(𝜑1,𝑡) → Λ0

sending 1𝜑0,𝑡 ⊗ 1𝜑1,𝑡 to 1 ∈ Λ0. See Figure 3 for an illustration of this composition.
Note that the product of the units is sent to the unit, §2.4.2, but in order to preclude
disk bubbling, one has to restrict the action windows, thus one needs to show that the
unit in the target is in the image of the appropriate filtered complex in the domain.
If 𝜑0,𝑡 = 𝛿0,𝑡 ◦ 𝑅𝜖𝑡 ◦ 𝜙−1

𝑡 and 𝜑1,𝑡 = 𝜙𝑡 ◦ 𝑅𝜖𝑡 ◦ 𝛿1,𝑡, we can pick the perturbation terms
small enough that:

A(1𝜑0,𝑡) + A(1𝜑1,𝑡) ≥ 𝑐(1, 𝜙−1
𝑡 ) + 𝑐(1, 𝜙𝑡) − 𝜌2 = −𝛾(𝜙𝑡) − 𝜌2,

for an arbitrarily small 𝜌2 > 0; this approximation follows from the results in §2.6.
Since 𝛾(𝜙𝑡) < ℏ, we can pick the perturbations so that 𝑐+ 𝜌1+ 𝜌2 < ℏ−𝛾(𝜙𝑡), recalling
that 𝑐 is defined by (14). Then A(1𝜑0,𝑡) + A(1𝜑1,𝑡) > 𝑐 − ℏ and so (16) is non-trivial.

2.5.3. Product operation with multiple point constraints. We continue with the set-up
of §2.5.2, and interpret the non-trivial operation (16) as a count of solutions to Floer’s
equation associated to a Hamiltonian connection over a twice-punctured disk; see
Figure 3 and 4.
Consider the closed unit disk Σ0 with holomorphic coordinate 𝑥+ 𝑖𝑦 with two punctures
at 𝑥 = ±0.5. By the results in §A.3.4, on Σ0 ×𝑊 → Σ0 there is a flat Hamiltonian con-
nection ℌ0 whose monodromies around −0.5 and +0.5 are 𝜑0,𝑡 and 𝜑1,𝑡, respectively.
Moreover, as explained in §A.3, we can ensure that all monodromy maps are valued in
the subgroup Ham(𝑊; 𝑅𝛼, 𝑟0 + 1) of those diffeomorphisms which agree with the Reeb
flow outside of Ω(𝑟0 + 1).
Let 𝑖𝜎 : 𝐷 → 𝐷, 𝜎 ∈ R, be an isotopy so that 𝑖𝜎(±0.5) = ±(0.5 + 𝜋−1 arctan(𝜎));
in words, 𝑖𝜎 expands the distance between the punctures as 𝜎 increases. Then let
Σ𝜎 = 𝑖𝜎(Σ0) and let ℌtmp

𝜎 = 𝑖𝜎,∗ℌ; we consider Σ𝜎 as having the standard complex
structure. One can think of (Σ𝜎,ℌtmp

𝜎 , 𝑗) as being isomorphic to (Σ0,ℌ0, 𝑖
∗
𝜎 𝑗).

As we want ℌ𝜎 to appear in a standard form on certain subsets, we will correct ℌtmp
𝜎 by

fiberwise Hamiltonian diffeomorphisms of Σ𝜎×𝑊, using the coordinate transformations
introduced in §A.2.4, §A.2.7, §A.3.6, and §A.4.3. We require the following:
(i) As 𝜎 → −∞, the connection equals the one obtained by gluing a pair-of-pants to

an augmentation half cylinder, as shown on the left hand side of Figure 3.
(ii) As 𝜎 → ∞, there is a conformally embedded neck of large modulus 𝑁 (𝜎) ⊂ Σ𝜎,

as proved in §2.5.5, and we require that the connection appears in the standard form
for Floer’s equation on the strip for the system 𝜑1,𝑡.
(iii) The energy estimates 𝐸(𝑢) ≤ 𝑐 −A𝜑0,𝑡 (𝛾0) −A𝜑1,𝑡 (𝛾1) + 𝐴 holds for solutions 𝑢

with asymptotics 𝛾0, 𝛾1, so that the disk formed has symplectic area 𝐴, and where 𝑐 is
given in (14).
The first property is straightforward to achieve using the connectivity of the space of
flat connections with fixed monodromy representation explained in §A.3.5.
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To achieve (ii), we argue as follows. First pick small geodesic disks around the
punctures which are disjoint from a holomorphic collar 𝐶∞,𝜎 around the boundary
circle. Via a coordinate tranformation as in §A.3.6, one ensures the connection appears
as the standard connection Floer’s equation for 𝜑∞,𝜅(𝑡), where 𝜅 is a cut-off function
[0, 1] → [0, 1] supported in a small interval. This is possible because 𝜑∞,𝑡 and 𝜑∞,𝜅(𝑡)
have the same time one map in the universal cover; see Proposition A.6. The relevant
parts of the domain are illustrated in Figure 13. It is crucial to note that this time
reparametrization does not change the value of 𝑐 given in (14).
By picking 𝜅 to smoothly depend on 𝜎, we can suppose that the monodromy diffeo-
morphisms along arcs in the boundary, which are disjoint from the support shown in
Figure 13, are the identity.
This construction ensures that the time-1 map of monodromy along the transverse arcs
of the neck 𝑁 (𝜎) equals 𝜓−1𝜑1𝜓. Since 𝜓 is in Ham(𝑊; 𝑅𝛼, 𝑟0 +1), we can correct the
connection by pushing forward by 𝜓 to ensure the monodromy along the transverse
arcs equal 𝜑1. Indeed, we can push forward by a family 𝑔 so that 𝑔𝑧 = 𝜓 holds for
𝑧 ∈ 𝜕Σ, and 𝑔𝑧 = id near the punctures. This achieves (ii).
The final step (pushing forward by a coordinate change 𝑔) can ruin the a priori
energy bounds. Indeed, if 𝑢 solves Floer’s equation for 𝑔∗ℌ, 𝐽, 𝐿 then 𝑔−1(𝑢) solves
Floer’s equation for ℌ, 𝑔−1∗ (𝐽), 𝑔−1(𝐿); see §A.4.3. However, since 𝑔 is valued in
Ham(𝑊; 𝑅𝛼, 𝑟0 + 1), 𝑔−1(𝐿) still lies in Ω(𝑟0 + 1), and hence the constant 𝑐 from (14)
is unchanged when we do this conjugation. It follows that solutions 𝑢 in the moduli
space M(𝜓∗ℌ, 𝐽, 𝐿) still satisfy the energy estimate of (iii).

support of 𝜑∞,𝜅(𝑡)

Figure 13. Construction of a flat connection with special properties;
shown are the two cylindrical ends, the collar around the boundary, and
the holomorphic neck 𝑁 (𝜎) of modulus 𝑠(𝜎) → ∞. The coloured paths
are used to compare monodromies.

Let ℌ𝜎 denote the smooth family of connections obtained from ℌ
tmp
𝜎 by applying

the coordinate changes described above. The upshot of these slightly technical
requirements is that, as 𝜎 → +∞, solutions to M(Σ𝜎,ℌ𝜎, 𝐽) restrict to Floer strips for
the system 𝜑1,𝑡 on the neck 𝑁 (𝜎).1
Let 𝑧1, . . . , 𝑧𝑘 be smooth maps R → 𝜕𝐷 so that 𝑧1(𝜎) = · · · = 𝑧𝑘(𝜎) = −𝑖 for 𝜎
sufficiently negative. Fix also smooth maps 𝑓𝑖 : 𝑃𝑖 → 𝐿 representing bordism classes of
maps in 𝐿.

1One should also note that one can use the construction of [KS21] described in §2.4 to construct the
desired family of flat connections.
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Consider Mpara to be the parametric moduli space of pairs (𝑝1, . . . , 𝑝𝑘, 𝜎, 𝑢) where 𝑢
is a finite energy solution to Floer’s equation for (Σ𝜎,ℌ𝜎 + 𝛿𝜎, 𝐽) and so:
(17) 𝑢(𝑧𝑖(𝜎)) = 𝑓𝑖(𝑝𝑖).
Here 𝛿𝜎 is a small uniformly compactly supported perturbation used to ensure Mpara is
cut transversally.
Each curve appearing in Mpara is asymptotic at the 0-labeled puncture to a 1-periodic
orbit 𝛾0 of 𝜑0,𝑡 and is asymptotic at 1-labeled puncture to a 1-periodic orbit 𝛾1 of 𝜑1,𝑡.
Let 𝑐 be given by (14), and restrict Mpara to only those 𝑢 whose asymptotic orbits have
cappings such that the disk formed by gluing 𝑢 to the two cappings has zero symplectic
area, and the sum of the actions of the capped orbits is greater than 𝑐 − ℏ. It follows
that the energy of any solution in Mpara is bounded from above by ℏ; in particular, no
disk (or sphere) bubbling can occur in Mpara.
Let Mpara,1 be the one-dimensional component, and consider the projection map:
(18) (𝑝1, . . . , 𝑝𝑘, 𝜎, 𝑢) ∈ Mpara,1 ↦→ 𝜎 ∈ R,
whose fiber over 𝜎 is denoted by M(𝜎). For generic 𝜎 ∈ R, M(𝜎) is a 0-dimensional
manifold.
Suppose that 𝜑0,𝑡, 𝜑1,𝑡 are as in §2.5.2, so that the actions of the unit elements 1𝜑0,𝑡
and 1𝜑1,𝑡 are greater than 𝑎, 𝑏, respectively, and 𝑎 + 𝑏 > 𝑐 − ℏ. In this setting, we can
interpret the count of elements in M(𝜎) (for generic 𝜎) as defining a map:
(19) 𝔟𝜎 : CF(𝜑0,𝑡)>𝑎 ⊗ CF(𝜑1,𝑡)>𝑏 → Λ0.

One sends a generator 𝛾0 ⊗ 𝛾1 to the number of elements in M(𝜎) whose asymptotics
equal 𝛾0, 𝛾1 and which form a contractible disk when glued to the cappings.

Claim 2.1. The map 𝔟𝜎 is a chain map for all generic 𝜎. If the bordism classes represented
by 𝑓1, . . . , 𝑓𝑘 have a total intersection product equal to the point class in 𝐿, then 𝔟𝜎 is
non-trivial on homology.

Proof. That 𝔟𝜎 is a chain map follows from the usual Floer theoretic arguments.
When 𝜎 is very negative, the two punctures become arbitrarily close to each other, and
Σ𝜎 is conformally equivalent to a very large disk 𝐷(𝑅) with 0 and 1 as the punctures.
Gluing arguments are then used to show that 𝔟𝜎 equals the composition of 𝔞 with the
pair-of-pants product as in §2.5.2, and is therefore non-trivial on homology.
Finally, standard deformation arguments show that 𝔟𝜎 and 𝔟𝜎′ are chain homotopic for
𝜎, 𝜎′ generic. In particular, the non-triviality for very negative values of 𝜎 implies the
non-triviality for all generic values of 𝜎. □

In the next subsection we exploit the non-triviality of 𝔟𝜎 for large values of 𝜎, for
specific choice of the punctures 𝑧𝑖(𝜎), so as to conclude chains of non-stationary Floer
strips, as described in §1.3.

2.5.4. Floer strips with multiple point constraints. The deformation argument in §2.5.3
produces Floer strips of arbitrarily large modulus for the system 𝜑1,𝑡; moreover, by
picking the punctures 𝑧𝑖(𝜎) to be equally spaced along the lower boundary of the Floer
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strip, one concludes 𝑘 sub-strips of large modulus, each with an incidence constraint at
the midpoint of its lower boundary; see Figure 14, and compare with Figure 4.

Figure 14. The Floer strip with 𝑘 incidence constraints obtained by
restricting the curves in §2.5.3 to the neck; this can be decomposed into
a sequence of 𝑘 sub-strips.

Moreover, since the total energy of a solution 𝑢 to the moduli space considered in
§2.5.3 is less than ℏ (by construction), the Floer strip in Figure 14 also has total energy
less than ℏ.
By a standard compactness argument (using Arzelà-Ascoli), one concludes 𝑘 infinite-
length Floer strips 𝑣1, . . . , 𝑣𝑘, each of which has an incidence constraint at (0, 0), i.e.,
𝑣𝑖(0, 0) lies in the image of 𝑓𝑖 : 𝑃𝑖 → 𝐿. By a second limiting process, one can turn
off the pertubations so that 𝜑1,𝑡 = 𝜙𝑡 ◦ 𝑅𝜖𝑡 ◦ 𝛿1,𝑡 converges to 𝜙𝑡; in this fashion, one
concludes a sequence 𝑢1, . . . , 𝑢𝑘 of infinite-length Floer strips for the original system
𝜙𝑡 so that 𝑢𝑖 incident to the images of 𝑓𝑖 : 𝑃𝑖 → 𝐿; see Figure 1.
Note that we do not claim that the positive asymptotic chord 𝛾𝑖,+ of 𝑢𝑖 matches the
negative asymptotic chord 𝛾𝑖+1,− of 𝑢𝑖+1. However, because the total energy prior to
breaking was less than ℏ, we conclude that:

A𝜙𝑡 (𝛾𝑘,+) ≤ A𝜙𝑡 (𝛾𝑖+1,−) ≤ A𝜙𝑡 (𝛾𝑖,+) ≤ A𝜙𝑡 (𝛾𝑖,−) < A𝜙𝑡 (𝛾𝑘,+) + ℏ;
in particular all of the actions of the asymptotics lie in an interval of length ℏ.
We can take 𝑓1, . . . , 𝑓𝑘 to have positive codimension and be disjoint from the intersection
𝐿 ∩ 𝜙1(𝐿) (which is presumed to be an isolated set) while still satisfying the condition
that the total intersection product is the point class (as required by Claim 2.1). Then
it is clear that each 𝑢𝑖 is non-constant (otherwise the image of 𝑓𝑖 would intersect
𝐿 ∩ 𝜙1(𝐿)). Thus we conclude strict inequalities A𝜙𝑡 (𝛾𝑖,+) < A𝜙𝑡 (𝛾𝑖,−).
It then follows that:

A𝜙𝑡 (𝛾1,−) > A𝜙𝑡 (𝛾1,+) > A𝜙𝑡 (𝛾2,+) > · · · > A𝜙𝑡 (𝛾𝑘,+)
are 𝑘 + 1 action values contained in an interval of length ℏ. Since ℏ can be taken
arbitrarily close to 𝛾(𝜙𝑡) in (12), we conclude 𝑘 + 1 action values in an interval of
length 𝛾(𝜙𝑡). The argument given in §1.3.3 upgrades this to an interval of length 𝛾(𝜙),
finishing the proof of Theorem 1.1.

2.5.5. A conformal embedding of an infinite strip into a disk. In this section we give a
formula for a biholomorphism 𝑤 between the infinite strip R × [0, 1] and the closed
unit disk 𝐷(1) with punctures {−1, 1}.
Consider 𝑤1 : R× [0, 1] → H× defined by 𝑠+ 𝑖𝑡 ↦→ 𝑒𝜋(𝑠+𝑖𝑡) , where H× is the punctured
closed upper half plane. Note that 𝑤1 maps the vertical line {𝑠} × [0, 1] onto the half
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circle 𝐶𝑠 ≔ {𝑒𝜋(𝑠+𝑖𝑡) : 𝑡 ∈ [0, 1]}. Consider also the Möbius transformation:

𝑤2 : H → 𝐷(1), 𝑧 ↦→ 𝑧 − 𝑖

𝑧 + 𝑖 .

This is a biholomorphism between H× and 𝐷(1) \ {−1, 1} (note that 0 is sent to −1
and ∞ is sent to +1). The image 𝑤2(𝐶𝑠) is a circular arc which is orthogonal to the
boundary of the disk. The desired biholomorphism is 𝑤 = 𝑤2 ◦ 𝑤1; see Figure 15 for
an illustration.

𝑤(+∞)𝑤(−∞) 𝑁 (𝑠)

Figure 15. The image 𝑁 (𝑠) of the rectangle [−𝑠, 𝑠] × [0, 1] under 𝑤.

2.6. Convergence of action values. In this section we prove that the action values
A𝜙𝑡 (𝔢) ∈ R for classes 𝔢 ∈ HF(𝜙𝑡), as defined by the limiting procedure in §2.3, are
well-defined and finite. The crux of the argument is to establish the continuity of
action values with respect to changing the slope 𝜖 of the approximation 𝛿𝑡 ◦ 𝑅𝛼𝜖𝑡 ◦ 𝜙𝑡.
Consider a Hamiltonian system 𝜙𝑡 supported in Ω(𝑟0). Similarly to §2.3, consider
perturbations 𝛿𝑡 ◦𝑅𝛼𝜖𝑡 ◦𝜙𝑡 so that 𝛿𝑡 is supported in Ω(𝑟0+1), and which are admissible
for definining the Floer complex CF(𝛿𝑡 ◦ 𝑅𝛼𝜖𝑡 ◦ 𝜙𝑡, 𝐽), as in §2.3.2.
Between any two such perturbation data (𝛿−, 𝜖−) and (𝛿+, 𝜖+) with 𝜖− ≥ 𝜖+, we take
the continuation map associated to the linear interpolation:

𝐻𝑠,𝑡 = (1 − 𝛽(𝑠))𝐾−
𝑡 + 𝛽(𝑠)𝐾+

𝑡 ,

where 𝛽 : R → [0, 1] is a non-decreasing cut-off function satisfying 𝛽(𝑠) = 0, for
𝑠 ≤ 0 and 𝛽(𝑠) = 1, for 𝑠 ≥ 1.
Recall that HF(𝜙𝑡) is defined as the inverse limit of the groups HF(𝛿𝑡 ◦ 𝑅𝛼𝜖𝑡 ◦ 𝜙𝑡) with
respect to the above continuation maps. Write 𝔢𝛿,𝜖 for the image of 𝔢 in HF(𝛿𝑡 ◦𝑅𝛼𝜖𝑡 ◦𝜙𝑡).
In this section we prove that the limit:
(20) A𝜙𝑡 (𝔢) = lim

𝜖→0
lim
𝛿→0

A(𝔢𝛿,𝜖)

exists, where A(𝑒𝛿,𝜖) is defined in (5).

2.6.1. Hofer norm estimate. First we establish an inequality in one direction:

Lemma 2.2. Let (𝛿−, 𝜖−) and (𝛿+, 𝜖+) be two perturbation data with 𝜖− ≥ 𝜖+, both
smaller than the minimal Reeb period. Let 𝐾−

𝑡 , 𝐾
+
𝑡 be the normalized Hamiltonian

functions generating the systems 𝛿±,𝑡 ◦ 𝑅𝛼𝜖±𝑡 ◦ 𝜙𝑡, and introduce the error term:

𝑒(𝐾+
𝑡 , 𝐾

−
𝑡 ) =

∫ 1

0
max
𝑥

(𝐾+
𝑡 (𝑥) − 𝐾−

𝑡 (𝑥), 0)d𝑡 < ∞;
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the integrand is the maximum of the non-negative part of 𝐾+
𝑡 (𝑥) − 𝐾−

𝑡 (𝑥). Then, for any
element 𝔢 ∈ HF(𝜙𝑡), we have the following estimate for the action values:

A(𝔢𝛿− ,𝜖−) ≥ A(𝔢𝛿+,𝜖+) − 𝑒(𝐾+
𝑡 , 𝐾

−
𝑡 ).

Moreover, if 𝜖+ = 𝜖− then
|A(𝔢𝛿− ,𝜖−) − A(𝔢𝛿+,𝜖+) | ≤ 𝑒(𝐾+

𝑡 , 𝐾
−
𝑡 ).

Proof. Fix some small constant 𝜌 > 0. One picks a chain level representative
∑
𝑥𝑖 for

𝔢𝛿+,𝜖+ so that minA(𝑥𝑖) ≥ A(𝔢𝛿+,𝜖+) − 𝜌. The actions of the chain level sum output by
the continuation map 𝔠(∑ 𝑥𝑖) =

∑
𝑦 𝑗 can be estimated to yield:

A(𝔢𝛿− ,𝜖−) ≥ minA(𝑦 𝑗) ≥ minA(𝑥𝑖) − 𝑒(𝐾+
𝑡 , 𝐾

−
𝑡 ).

The proof of the rightmost inequality is standard and follows from the energy estimate;
see, e.g., [HS95, Oh05b, Gin05] or §A.4.2. Taking 𝜌→ 0 yields the desired result.
To see why 𝑒(𝐾+

𝑡 , 𝐾
−
𝑡 ) is finite, observe that 𝐾±

𝑡 = 𝜖±𝑟 + 𝑐± where 𝑐± is locally constant
outside of Ω(𝑟0 + 1), and hence 𝐾+

𝑡 − 𝐾−
𝑡 = (𝑐+ − 𝑐−) − (𝜖− − 𝜖+)𝑡; this is bounded

from above because we assume 𝜖− ≥ 𝜖+. □

2.6.2. Estimating the error term. Let 𝜙𝑡 be a Hamiltonian system generated by a
normalized Hamiltonian 𝐻𝑡. Let (𝛿, 𝜖) be an admissible perturbation data; the system
𝛿𝑡 ◦ 𝑅𝛼𝜖,𝑡 ◦ 𝜙𝑡 is generated by:

(21) 𝐾𝛿,𝜖,𝑡 = Δ𝑡 + 𝜖 𝑓 (𝑟 ◦ 𝛿−1𝑡 − 𝑟0) + 𝐻𝑡 ◦ (𝛿𝑡𝑅𝛼𝜖𝑡)−1 + 𝜖𝑟0,
where Δ𝑡 is the compactly supported Hamiltonian function generating 𝛿𝑡 and the
constant term 𝜖𝑟0 is used to make 𝐾𝛿,𝑡 normalized. It is convenient to compare with
the reference Hamiltonian:

𝐺𝜖,𝑡 = 𝜖 𝑓 (𝑟 − 𝑟0) + 𝐻𝑡 + 𝜖𝑟0.
Then the following estimate holds:
(22) |𝐾𝛿,𝜖,𝑡 − 𝐺𝜖,𝑡 | ≤ |Δ𝑡 | + |𝐻 |𝐶1 |𝛿𝑡 ◦ 𝑅𝛼𝜖𝑡 |𝐶0 + | 𝑓 |𝐶1 |𝛿𝑡 |𝐶0 ,

where | 𝑓 | ≔ max𝑥 | 𝑓 (𝑥) | for a map 𝑓 : 𝑊 → R and the 𝐶0-norm is with respect to a
metric that is translation invariant at infinity. Fixing 𝜌, 𝜖 > 0, define:

𝐵(𝜖, 𝜌) ≔ {𝛿 : |𝐾𝛿,𝜖 − 𝐺𝜖 | < 𝜌 and 𝛿 ◦ 𝑅𝛼𝜖𝑡 ◦ 𝜙𝑡 is admissible for 𝐽}.
Similarly let 𝐶(𝜖0, 𝜌) be the set of pairs (𝜖, 𝛿) so that 𝜖 < 𝜖0 and 𝛿 ∈ 𝐵(𝜖, 𝜌).
From the estimate (22), one sees that to define Floer cohomology as in §2.3 it is enough
to take the limit of HF(𝛿𝑡 ◦ 𝑅𝛼𝜖𝑡 ◦ 𝜙𝑡) over the subcategory where (𝜖, 𝛿) ∈ 𝐶(𝜖0, 𝜌).
Associated to the set of perturbations 𝐵(𝜖, 𝜌), let:

𝐴(𝔢; 𝜖, 𝜌) = {A(𝔢𝛿,𝜖) : 𝛿 ∈ 𝐵(𝜖, 𝜌)};
by the estimate §2.6.1 the diameter of 𝐴(𝔢; 𝜖, 𝜌) is less than 2𝜌. Associated to the
larger set 𝐶(𝜖0, 𝜌), let:

𝐴(𝔢; 𝜖0, 𝜌) =
{
A(𝔢𝛿,𝜖) : (𝜖, 𝛿) ∈ 𝐶(𝜖0, 𝜌)

}
=
⋃

𝜖<𝜖0 𝐴(𝔢; 𝜖, 𝜌).
The key to convergence of the action values is to bound the diameter of 𝐴(𝔢; 𝜖0, 𝜌).
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2.6.3. Comparing perturbations with different slopes. We consider specific pairs:
𝜑±,𝑡 = 𝛿±,𝑡 ◦ 𝑅𝛼𝜖±𝑡 ◦ 𝜙𝑡 .

The construction is delicate, as we want to have precise control over the continuation
map HF(𝜑+,𝑡) → HF(𝜑−,𝑡). Fix 𝜌, 𝜖0 > 0 so that 𝜖0(1 + 𝑟0) < 𝜌/3.
Assume that 𝜖+ < 𝜖− < 𝜖0 and pick a perturbation data 𝛿+ ∈ 𝐵(𝜖+, 𝜌′) where 𝜌′ < 𝜌/3.
Consider the system 𝜑+,𝑡 = 𝛿+,𝑡 ◦ 𝑅𝛼𝜖+𝑡 ◦ 𝜙𝑡 which is generated by:

𝐾+
𝑡 = Δ+,𝑡 + 𝜖+ 𝑓 (𝑟 ◦ 𝛿−1𝑡 − 𝑟0) + 𝐻𝑡 ◦ (𝛿+,𝑡𝑅𝛼𝜖+𝑡)

−1 + 𝜖+𝑟0,
as in (21). Assume that Δ+,𝑡 is supported in Ω(𝑟0 + 0.5); this is sufficient to make 𝜑+,𝑡
admissible. It follows that:

𝐾+
𝑡 =


𝐾+
𝑡 𝑟 < 𝑟0 + 0.5,

ℎ+(𝑟) 𝑟0 + 0.5 ≤ 𝑟 < 𝑟0 + 1,
𝜖+𝑟 + 𝐻𝑡 𝑟0 + 1 ≤ 𝑟.

It is important to bear in mind that 𝐻𝑡 is locally constant on the region 𝑟 > 𝑟0. Note
that 𝐾+

𝑡 is normalized as 𝐻𝑡 is normalized.
Define:

𝐾−
𝑡 =


𝐾+
𝑡 𝑟 < 𝑟0 + 0.5,

ℎ−(𝑟) 𝑟0 + 0.5 ≤ 𝑟 < 𝑟0 + 1,
𝜖−𝑟 + 𝐻𝑡 𝑟0 + 1 ≤ 𝑟,

where ℎ−(𝑟) = ℎ+(𝑟) for 𝑟 near 𝑟0 + 0.5, and 𝜕𝑟ℎ−(𝑟) ≥ 𝜕𝑟ℎ+(𝑟); such a function exists
since 𝜖− > 𝜖+. We also suppose that 𝜕𝑟ℎ−, 𝜕𝑟ℎ+ are non-negative and everywhere
smaller than the minimal period of a Reeb orbit for 𝛼; this ensures that there are no
orbits of 𝐾±

𝑡 in the region 𝑟0 + 0.5 ≤ 𝑟.
We claim that if 𝛿−,𝑡 ◦ 𝑅𝛼𝜖− ,𝑡 ◦𝜙𝑡 is the system generated by 𝐾−

𝑡 , then 𝛿− ∈ 𝐵(𝜖−, 𝜌). To
see this we proceed as follows:

(23)

|𝐾− − 𝐺𝜖− | = |𝐾− − 𝐺𝜖− |Ω(𝑟0+1)

≤ |𝐾− − 𝐾+ |Ω(𝑟0+1) + |𝐾+ − 𝐺𝜖+ |Ω(𝑟0+1) + |𝐺𝜖+ − 𝐺𝜖− |Ω(𝑟0+1)

≤ |ℎ− − ℎ+ |Ω(𝑟0+1) + 𝜌′ + (𝜖− − 𝜖+) ( | 𝑓 (𝑟 − 𝑟0) |Ω(𝑟0+1) + 𝑟0)
≤ 𝜖0(𝑟0 + 1) + 𝜌/3 + 𝜖0(1 + 𝑟0) < 𝜌

Next, observe that the periodic orbits of the two systems 𝜑+,𝑡 and 𝜑−,𝑡 are identical and
they all lie in Ω(𝑟0). By a strong maximum principle argument similar to [FS07, §2],
all of the Floer continuation cylinders associated to the linear interpolation between
𝐾±
𝑡 remain in Ω(𝑟0); see also [Vit99, §1.3], [Rit13, §D.3].

Moreover, since the two Hamiltonians 𝐾+
𝑡 and 𝐾−

𝑡 coincide on Ω(𝑟0), the continuation
cylinders solve the translation invariant Floer equation in Ω(𝑟0). By index reasons, the
only rigid continuation cylinders are the stationary solutions (i.e., the continuation
cylinders are 𝑠-independent). Moreover, every such cylinder contributes to the contin-
uation map 𝔠, and hence 𝔠 is the “identity map,” bearing in mind that the (capped)
orbits of 𝐾+

𝑡 and 𝐾−
𝑡 are the same.
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This observation implies that the continuation map from 𝐾+
𝑡 to 𝐾−

𝑡 preserves action
and is an isomorphism on chain level. Thus A(𝔢𝛿+,𝜖+) = A(𝔢𝛿− ,𝜖− ), as desired.
In particular, this implies that the sets 𝐴(𝔢; 𝜖−, 𝜌) and 𝐴(𝔢; 𝜖+, 𝜌) intersect. Since both
sets have diameter bounded by 2𝜌, we conclude:

Proposition 2.3. If 𝜖0(1 + 𝑟0) < 𝜌/3, then the diameter of 𝐴(𝔢; 𝜖0, 𝜌) is less than 4𝜌.

Indeed, the above argument could be performed for any choice of 𝜖+ < 𝜖− < 𝜖0.
This implies that the action values A(𝔢𝛿,𝜖) converge in the sense of (20). Standard
arguments show that the limit is independent of the choice of contact form, the choice
of 𝑟0, and the choice of complex structure; the details are left to the reader.

2.7. A priori estimates, transversality, and compactness. Let (𝑊, 𝜔) be a convex-at-
infinity symplectic manifold, 𝐿 ⊂ 𝑊 a closed Lagrangian submanifold, and Σ a compact
Riemann surface with boundary and a set Γ of interior punctures, and consider an
𝜔-tame almost complex structure 𝐽 which is translation invariant in the convex end.
To each Hamiltonian connection ℌ on Σ ×𝑊 one can associate the moduli space
M(ℌ, 𝐽) of maps 𝑢 : Σ → 𝑊 solving Floer’s equation, as explained in §A.4. In this
section we explain the Floer type operations we work with in our paper, in particular
we will show that solutions to Floer’s equation, for the operations under consideration,
satisfy a priori energy bound. Following [BC23] and [HS95] we will shortly review
the standard bubbling analysis, transversality and compactness of Floer type moduli
spaces. In §2.7.5, following [BC23], we show that a soft maximum principle should
hold whenever there is a gradient bound and energy bound.

2.7.1. Cylindrical ends. Throughout we consider cylindrical coordinates near the
punctures, i.e., for each 𝑧 ∈ Γ one chooses a biholomorphism 𝜖𝑧 : Σ± → 𝑈𝑧\{𝑧} ⊂ Σ
where 𝑈𝑧 is a neighborhood of 𝑧 and Σ± = R± × R/Z.
We assume ℌ equals the connection ℌ(𝜑𝑧

𝑡 ) given by the normalized connection one-
form 𝔞𝑧 = 𝐻𝑧

𝑡 d𝑡, where 𝐻𝑧
𝑡 is the normalized generator of the system 𝜑𝑧

𝑡 , in the
cylindrical end corresponding to 𝑧 ∈ Γ. The results in §A.3.6 imply that any connection
which is flat in the cylindrical ends can be expressed in this form, after applying some
domain-dependent Hamiltonian diffeomorphism near the punctures.
See [Sei08b, §8d] for related discussion.

2.7.2. A priori energy estimates. This section concerns a priori energy bounds for solu-
tions 𝑢 ∈ M(ℌ, 𝐽) if the asymptotics are fixed and the curvature of the corresponding
Hamiltonian connection is suitably non-positive at infinity. Suppose first that ℌ is a
flat Hamiltonian connection on Σ ×𝑊 → Σ.
If 𝑢 ∈ M(ℌ, 𝐽) is a solution to Floer’s equation with contractible asymptotic orbits and
contractible boundary loops 𝑢(𝜕Σ) then §A.4 implies the following energy identity:

(24) 𝐸(𝑢) =
∫
Σ
𝑢∗𝜔 +

∫
𝜕Σ
𝐻𝜕Σ
𝑡 d𝑡 −

∑︁
Γ+

∫
R/Z

𝐻𝑧
𝑡 d𝑡 +

∑︁
Γ−

∫
R/Z

𝐻𝑧
𝑡 d𝑡.
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Note that the contribution due to 𝜕Σ is independent of 𝑢, and depends only on the
constant value 𝐻𝜕Σ

𝑡 takes on 𝐿.
Given our set-up, one can consider a cut-off version ℌ𝜎 where 𝜎 ∈ [0,∞) is a cut-off
parameter, defined as follows: for each positive puncture, replace the connection in
the cylindrical end by the connection generated by 𝛽(𝑠 − 𝜎)𝐻𝑧

𝑡 d𝑡, where 𝛽(𝑥) = 1 for
𝑥 ≤ 0 and 𝛽(𝑥) = 0 for 𝑥 ≥ 1. The resulting connection ℌ𝜎 is no longer flat. However,
standard computation of the energy of 𝑢 ∈ M(ℌ𝜎, 𝐽) gives the identity:

(25) 𝐸(𝑢) =
∫
Σ
𝑢∗𝜔 +

∫
𝜕Σ
𝐻𝜕Σ
𝑡 d𝑡 +

∑︁
Γ−

∫
R/Z

𝐻𝑧
𝑡 d𝑡 +

∑︁
𝑧∈Γ+

∫
𝛽′(𝑠 − 𝜎)𝐻𝑧

𝑡 d𝑠d𝑡.

Since 𝛽′ ≤ 0 and 𝐻𝑧
𝑡 is assumed to be positive at infinity, we conclude that 𝐸(𝑢) is

uniformly bounded in terms of the action of the asymptotics at the negative ends.
One can also deform ℌ or ℌ𝜎 on a compact subset of Σ ×𝑊. Indeed, ℌ is locally given
as some one-form 𝔞 = 𝐾d𝑠 + 𝐻d𝑡 on Σ ×𝑊, where 𝐾, 𝐻 are normalized. One perturbs
𝐾′ = 𝐾 + 𝛿1, 𝐻′ = 𝐻 + 𝛿2 where 𝛿𝑖 are compactly supported, defining a perturbed
connection ℌ′. If 𝑢 ∈ M(ℌ′, 𝐽), then the results in §A.4.2 give an energy identity of
the form:

𝐸(𝑢) =
∫
Σ
𝑢∗𝜔 +

∫
𝜕Σ
𝐻𝜕Σ
𝑡 d𝑡 −

∑︁
Γ+

∫
R/Z

𝐻𝑧
𝑡 d𝑡 +

∑︁
Γ−

∫
R/Z

𝐻𝑧
𝑡 d𝑡 +

∫
Σ
𝑢∗𝔯.

The new term 𝔯 is the curvature two-form on Σ ×𝑊 for ℌ′ and is compactly supported
and vanishes on vectors tangent to𝑊. The additional contribution to the energy can
be uniformly bounded in terms of the 𝐶1 size of the perturbation 𝛿; see §A.2.3 for the
precise formula for the curvature term.
One similarly obtains an energy identity for compactly supported perturbations ℌ𝜎,′ of
the cut-off connection by adding the

∫
𝑢∗𝔯 term to (25).

2.7.3. Bubbling. The bubbling analysis required is standard and our arguments follow
[HS95, §A], [MS12, §4], and [CC23, §C]; see also §2.9 for consideration of the
non-compact end of𝑊.
One shows that an a priori energy bound for a sequence of solutions to Floer’s equation
guarantees a gradient bound unless bubbling occurs, see, e.g., [HS95, §A]. The
argument, with some necessary adjustments, works in the general setting of Floer’s
equation associated to a Hamiltonian connection with Lagrangian boundary conditions,
as in §A.4 and [MS12, §8].
Because we are using the semipositivity framework to achieve gradient bounds, it is
important to know that bubbling implies the existence of a holomorphic sphere incident
to the limiting solution to Floer’s equation; see [HS95, Theorem A.1.(iii)].

2.7.4. Gradient bounds and elliptic regularity. In this paper, we work with a perturbed
Cauchy-Riemann equation with a domain dependent smooth perturbation term 𝐴𝑧,
(26) 𝜕𝑠𝑢 + 𝐽𝑧 (𝑢)𝜕𝑡𝑢 = 𝐴𝑧 (𝑢),
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and we are interested in solutions with Lagrangian boundary conditions 𝑢(𝜕Σ(1)) ⊂ 𝐿

where Σ(1) = 𝐷(1) or 𝐷(1)∩H and 𝐽 is a domain dependent almost complex structure.
Indeed, solutions 𝑢 to the equation above with gradient bounded by a constant 𝑐1,
satisfy |𝑢|𝑊𝑘,2 ≤ 𝑐𝑘 on compact subsets for all 𝑘 > 0 where 𝑐𝑘 only depends on
𝑐1, 𝐽, 𝐿, 𝐴. This is implicitly used in compactness results and bubbling analysis, see
§2.7.3. We refer to [RS01, §C] and [BC23] for further details.

2.7.5. Maximum principle. In this subsection assume that the elements of the moduli
space M(ℌ, 𝐽) satisfy the gradient bound and the energy bound condition, i.e., for any
sequence of points {𝑧𝑛}𝑛≥1 on the domain Σ and any sequence {𝑢𝑛}𝑛≥1 of solutions
the two sequences |∇𝑢𝑛(𝑧𝑛) |, 𝐸(𝑢𝑛) are bounded, where the norm is with respect to
some translation invariant metric at infinity on𝑊, and 𝐸(𝑢) is the energy of 𝑢.
Define Σ0 ⊂ Σ to be a compact complement of cylindrical ends, so that ℌ, 𝐽 are
translation invariant outside of Σ0.
We first claim that there exists 𝜎 > 0 such that 𝑢𝑛(Σ \ Σ0) ⊂ Ω(𝑒𝜎𝑟0) for all 𝑛, where
Ω is a star-shaped domain in𝑊. If it does not hold, then for every 𝜎 > 0 there is 𝑛 so
that 𝑢𝑛(Σ \ Σ0) ∩ 𝜌𝜎(Ω) ≠ ∅. Then [BC23, Proposition 2.2] implies that the sequence
𝑢𝑛 can not have bounded energy, which is a contradiction with our assumption.
Therefore, if the maximum principle fails for the sequence {𝑢𝑛}𝑛≥1, it must fail on the
compact subset Σ0. Since, the image of Σ0 under 𝑢𝑛 intersects a fixed compact subset
of𝑊 for every 𝑛 and the sequence {𝑢𝑛}𝑛≥1 satisfies the gradient bound, so the images
𝑢𝑛(Σ0) can not go off to infinity. Hence, the sequence {𝑢𝑛}𝑛≥1 satisfies the maximum
principle. See [Gro23] for related discussion.

2.7.6. Asymptotics at punctures. Our arguments rely on standard asymptotic conver-
gence results for solutions to the translation invariant Floer’s equation in cylindrical or
strip-like ends; we refer the reader to [Sal97, §1.5] and [RS01, §4].

2.7.7. Transversality. Our approach to achieving transversality for moduli spaces of
solutions to Floer’s equation follows [MS12, §8]; see also [Sch95, §4.2], [HS95, FHS95,
Wen20], and [BC23, §4.1].
The strategy to achieve transversality is to perturb the Hamiltonian connection ℌ in a
compactly supported fashion. More precisely, one considers Hamiltonian connections
ℌ + 𝛿 which agree with ℌ outside of a compact subset of𝑊 × Σ. Typically we have
that ℌ is a flat connection, but we do not require that the perturbations ℌ + 𝛿 are
flat; however, since the perturbations are compactly supported, we will still have the
required a priori estimates, as explained in §2.7.2.
Fix a precompact open set 𝑈 in 𝑊 × Σ large enough that every solution to Floer’s
equation passes through 𝑈; e.g., one can take 𝑈 to be Ω(𝑟) × 𝐷 where 𝐷 is a disk in Σ
and 𝑟 is a sufficiently large number. Following the standard strategy, one considers P
to be a sufficiently rich Banach space of perturbation data 𝛿 compactly supported in 𝑈.
One then considers the universal moduli space Muni(ℌ) of solutions (𝑢, 𝛿) where 𝑢
solves the equation for the perturbed system ℌ + 𝛿. Similarly to the proof of [MS12,
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Theorem 8.3.1], one proves that Muni(ℌ) is cut transversally, and that any regular
value 𝛿 of the projection Muni(ℌ) → P will make M(ℌ + 𝛿) cut transversally.
The construction can also be done parametrically, i.e., given a one-parameter family
of data ℌ𝜏, 𝑗𝜏, 𝐽𝜏, for 𝜏 ∈ [0, 1]; this parametric transversality is necessary for the
deformation arguments employed in §2.4, §2.5; see also §2.8.2.

2.8. Semipositivity. The idea behind the semipositive (i.e., weakly monotone) condition
is to preclude the bubbling phenomenon in §2.7.3 by controlling the dimension of
moduli spaces of holomorphic spheres. This is achieved by constraining which Chern
numbers can appear.

Definition 1. A symplectic manifold (𝑊, 𝜔) is called semipositive if, for every 𝐴 ∈
𝜋2(𝑊), the following holds:

𝜔(𝐴) > 0 and 𝑐1(𝐴) ≥ 3 − 𝑛 =⇒ 𝑐1(𝐴) ≥ 0.

Floer theory was constructed in [HS95] for semipositive symplectic manifolds (weakly
monotone in their terminology). The Arnol’d conjecture (with the F2-Betti numbers)
was proved for all semipositive symplectic manifolds in [Ono95].

2.8.1. Semipositivity and Hamiltonian Floer theory. Consider a moduli space M(ℌ, 𝐽)
of solutions to Floer’s equation, where ℌ is a Hamiltonian connection on Σ ×𝑊 and Σ
is a punctured Riemann surface; see §A.4.
If 𝐽 is chosen generically andℌ′ is a generic perturbation of the Hamiltonian connection
on the compact part of𝑊, one can guarantee that every sequence 𝑢𝑛 ∈ M(ℌ′, 𝐽) with
index ≤ 1 and bounded energy has bounded first derivatives with respect to a metric
which is translation invariant in the ends.
The genericity is used to ensure that the evaluation map of the moduli space of simple
𝐽-holomorphic spheres (6) is transverse to the evaluation map M(ℌ′, 𝐽) → 𝑊 of the
Floer moduli space. With the above bound on the index of the solutions 𝑢𝑛, we can
preclude the formation of bubbles.
To see this one argues as follows: semipositivity implies that bubbles can only have
Chern number either 0 or 1. Holomorphic spheres with zero first Chern number form
a codimension 4 pseudocycle in𝑊 and hence they generically miss the 3-dimensional
pseudocycle defined by the moduli space of solutions with index ≤ 1. The bubbles
with Chern number 1 can only touch solutions with index 0, i.e., 1-periodic orbits of
the Hamiltonian system. The latter also does not happen generically since the moduli
space of holomorphic spheres with Chern number 1 form a codimension 2 pseudocycle.
Finally the claim follows from bubbling analysis in §2.7.3. See [HS95, §3] and [MS12,
§3] for more details.

2.8.2. Semipositivity and parametric moduli spaces in Hamiltonian Floer theory. The
argument in §2.8.1 can be done parametrically, as follows.
Fix a one-parameter family ℌ𝜃, 𝑗𝜃 for 𝜃 ∈ [0, 1], where 𝑗𝜃 is a family of conformal
structures on Σ (i.e., unlike the preceding discussion, the Riemann surface structure is
not fixed).
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One considers the parametric moduli space M(ℌ𝜃, 𝐽, 𝑗𝜃) whose solutions are pairs
(𝜃, 𝑢) where 𝑢 solves Floer’s equation for M(ℌ𝜃, 𝐽) on the Riemann surface (Σ, 𝑗𝜃).
As above, there is a natural evaluation map:
(27) (𝜃, 𝑢, 𝑧) ∈ M(ℌ𝜃, 𝐽, 𝑗𝜃) × Σ ↦→ 𝑢(𝑧) ∈ 𝑊,

which defines a pseudochain of dimension 2 + dimM(ℌ𝜃, 𝐽, 𝑗𝜃). If all components of
M are cut transversally, then a sphere of Chern number ≥ 1 cannot bubble off along
any sequence whose index in M is 0 or 1, while a sphere of Chern number 0 cannot
bubble off such a sequence because the evaluation map on the moduli space of simple
holomorphic spheres is codimension at least 4 in this case.
Thus one can use bubbling analysis to derive a priori 𝐶1 estimates on 0 or 1 dimensional
components of parametric moduli spaces. This is used, e.g., to prove unit times unit is
unit in §2.4.2.

2.9. Tame symplectic manifolds. A symplectic manifold (𝑊, 𝜔, 𝐽) with almost complex
structure 𝐽 is called tame if there is a metric 𝑔 so that 𝜔(𝑣, 𝐽𝑣)/𝑔(𝑣, 𝑣) is uniformly
positive for 𝑣 ≠ 0, and (𝑊, 𝐽, 𝑔) is tame as an almost complex manifold as in §2.9.1.
See [Gro85, 2.3.A′], [Pol93, Che98]. Note that, in the case where 𝑊 is compact,
tameness is equivalent to 𝜔(𝑣, 𝐽𝑣) > 0 for 𝑣 ≠ 0.

2.9.1. Tame almost complex manifolds. A manifold (𝑊, 𝐽, 𝑔) with a complete metric 𝑔
and almost complex structure 𝐽 is called tame if there are constants 𝛿 > 0 and 𝐶 > 0
so that:
(i) 𝐽 acts by 𝑔-isometries in each tangent space,
(ii) 𝑊 can be covered by coordinate charts identified with 𝐵(𝛿) ⊂ C𝑛 so that the 𝐶2

sizes of 𝑔 and 𝐽 are bounded by 𝐶 in each chart.
It follows that the injectivity radius of 𝑔 is bounded from below, and the sectional
curvatures are uniformly bounded; see [Gro85, 2.3.A′].

2.9.2. Mean value property. Let (𝑀2𝑛, 𝐽, 𝑔) be a tame almost complex manifold. The
mean value property for the energy density states that there are positive constants 𝑐
and 𝜖 depending on 𝐽, 𝑔, such that the following holds:∫

𝐷(𝑟)
|d𝑢|2𝑔d𝑠d𝑡 < 𝜖 =⇒ |d𝑢(0) |2𝑔 ≤

𝑐

𝑟2

∫
𝐷(𝑟)

|d𝑢|2𝑔d𝑠d𝑡,

for all 𝐽-holomorphic curves 𝑢 : 𝐷(𝑟) → 𝑀, where 𝐷(𝑟) is the standard disk with
radius 𝑟; see [RS01, MS12, CC23]. A similar result holds for 𝐽-holomorphic half-disks
whose real-part lies on a compact totally real submanifold.

2.9.3. Diameters of low energy annuli in tame almost complex manifolds. This section
concerns removal of singularities, and is used in the bubbling analysis in §2.7.3. Let
𝐴(𝑟) be the annulus (or rectangle) [−𝑟, 𝑟] × 𝑆, with 𝑆 = R/Z or 𝑆 = [0, 1].
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Proposition 2.4. Let (𝑊, 𝐽) be tame and 𝐿 be a compact totally real submanifold. For
every 𝛿 > 0 there exists 𝜖 > 0 so that if 𝑢 : 𝐴(𝑟 + 1) →𝑊 is 𝐽-holomorphic then:∫

𝐴(𝑟+1)
|𝜕𝑠𝑢|2𝑔 d𝑠d𝑡 ≤ 𝜖 =⇒ diam𝑔 (𝑢(𝐴(𝑟))) ≤ 𝛿.

Note that 𝜖 does not depend on 𝑟. In the case when 𝑆 = [0, 1], we require 𝑢 to map the
𝑡 = 0, 1 boundaries into 𝐿.

Proof. One uses the mean-value property from §2.9.2 and proves the energy of 𝑢
over smaller domains 𝐴(𝑠) decays exponentially as 𝑠 approaches 0. For the detailed
argument, see [CC23, §6] and [MS12, §4]. □

Suppose that 𝑢 : C → 𝑊 or 𝑢 : H → (𝑊, 𝐿) is holomorphic with finite energy. The
non-compact end of C or H can be covered by pieces biholomorphic to 𝐴(𝑟), and so
that 𝑢 has small energy on these pieces. One thereby concludes the image of 𝑢 has
finite diameter, and 𝑢 has a continuously removable singularity at ∞. With a bit more
work, one can show that the extension is of sufficiently regularity (𝑊1,𝑝 for 𝑝 bigger
than 2) in order to conclude the continuous extension of 𝑢 is a smooth holomorphic
sphere or disk with boundary on 𝐿; this smooth removal of singularities is explained in
greater detail in [MS12].

Appendix A. Flat Hamiltonian connections

Our approach to Floer’s equation on general Riemann surfaces is via bundles with
a Hamiltonian connection. See [MS12, §8], [Sei97a, §7], [Pol01, §9.3] for a similar
approach.

A.1. Ehresmann connections. To every smooth fiber bundle 𝜋 : 𝐸 → 𝐵 one associates
the vertical sub-bundle 𝑉 = ker d𝜋 ⊂ 𝑇𝐸. An Ehresmann connection is a smoothly
varying choice of linear complement ℌ ⊂ 𝑇𝐸.

A.1.1. Complete connections. Let 𝐸 → 𝐵 be a fiber bundle with an Ehresmann connec-
tion ℌ. Every vector field 𝑌 on 𝐵 has a unique lift to a horizontal vector field 𝑌ℌ ∈ ℌ.
An Ehresmann connection is called complete provided that every compactly supported
vector field 𝑌 on 𝐵 lifts to a complete vector field on 𝐸.

A.1.2. Monodromy diffeomorphisms. Let 𝑏(𝑡) be a path in 𝐵. If ℌ is a complete
Ehresmann connection on 𝐸 → 𝐵, then for every 𝑒0 ∈ 𝐸𝑏(0) there is a unique horizontal
lift 𝑒(𝑡) so 𝑒(0) = 𝑒0, 𝜋(𝑒(𝑡)) = 𝑏(𝑡), and 𝑒′(𝑡) ∈ ℌ. The map which associates 𝑒0 to
𝑒(1) is a diffeomorphism 𝐸𝑥 (0) → 𝐸𝑥 (1) and is called the monodromy of 𝑏(𝑡).
As an example, solutions of the ODE 𝑦′(𝑥) = 𝐹(𝑥, 𝑦(𝑥)), 𝑦(0) = 𝑦0, are horizontal
lifts of 𝑥 (𝑡) = 𝑡 for the Ehresmann connection ℌ = {d𝑦 − 𝐹(𝑥, 𝑦(𝑥))d𝑥 = 0} on R2.
The map which associates an initial condition 𝑦0 to 𝑦(1) is the prototypical example of
a monodromy diffeomorphism.
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A.1.3. Flat connections. An Ehresmann connection ℌ is called flat provided that, for
every choice of 𝑒 ∈ 𝐸𝑏, there exists a germ of a section 𝔰 of 𝐸 → 𝐵 at 𝑏 satisfying
𝔰(𝑏) = 𝑒 and im(d𝔰) = ℌ. If ℌ is a complete flat connection, then deformations of a
path 𝑏(𝑡) relative its endpoints do not change the monodromy.

A.1.4. Curvature of an Ehresmann connection. Let 𝑌1, 𝑌2 be two vector fields on 𝐵
defined in a neighborhood of 𝑏. Let 𝑌𝑖,ℌ denote their horizontal lifts to 𝐸. For 𝑒 ∈ 𝐸𝑏,
define:

𝑅ℌ,𝑒(𝑌1, 𝑌2) ≔ [𝑌1,ℌ, 𝑌2,ℌ] − [𝑌1, 𝑌2]ℌ.
It is a standard exercise in manipulating the Lie bracket to show that 𝑅ℌ,𝑒(𝑌1, 𝑌2) is
valued in the vertical sub-bundle 𝑉 ⊂ 𝑇𝐸. Moreover, 𝑅ℌ,𝑒 commutes with multiplication
by smooth functions; in particular, 𝑅ℌ,𝑒 is induced by a tensor 𝑇𝐵𝑏 ∧ 𝑇𝐵𝑏 → 𝑉𝑒. The
resulting tensor 𝑅ℌ : 𝜋∗(𝑇𝐵 ∧ 𝑇𝐵) → 𝑉 is called the curvature tensor of ℌ.
It is clear that connection is flat if and only if its curvature tensor is everywhere zero.

A.2. Hamiltonian connections on trivial bundles. Let 𝐸 =𝑊 × 𝐵 → 𝐵 be a trivial bundle
and suppose the fiber (𝑊, 𝜔) is a symplectic manifold. A Hamiltonian connection is
an Ehresmann connection 𝑇𝐸 = 𝑇𝑊 ⊕ ℌ (where 𝑇𝑊 is identified with the vertical
sub-bundle 𝑉 of the fibration 𝐸 → 𝐵) so that:
(i) ℌ is the Ω-complement to 𝑇𝑊,
(ii) Ω ≔ pr∗𝜔 − d𝔞, and,
(iii) 𝔞 is a one-form on 𝐸 which vanishes on 𝑇𝑊.

It follows that ℌ is a linear complement to 𝑇𝑊 and hence defines an Ehresmann
connection.

A.2.1. One-forms vanishing on the vertical bundle. If 𝔞 is a one-form on 𝐸 which vanishes
on 𝑇𝑊, and 𝑥1, . . . , 𝑥𝑘 are coordinates on 𝐵 pulled back to coordinates on 𝐸, then 𝔞

can be written as 𝔞 = 𝐻1d𝑥1 + · · · + 𝐻𝑘d𝑥𝑘. Here 𝐻𝑖 is considered a function on𝑊 × 𝐵,
i.e., it is domain dependent. In this sense, 𝔞 can be considered as a one-form on 𝐵
taking values in 𝐶∞(𝑊,R); see, e.g., [Sei08b, §8e], [KS21, pp. 3293].

A.2.2. Monodromy of a Hamiltonian connection is Hamiltonian. Fix local coordinates
𝑥1, . . . , 𝑥𝑘 on the base 𝐵 of the trivial bundle𝑊 × 𝐵 → 𝐵. Consider the Hamiltonian
connection ℌ induced by 𝔞 = 𝐻1d𝑥1 + · · · + 𝐻𝑘d𝑥𝑘 as in §A.2.1. Let 𝑥 : [0, 1] → 𝐵 be
a path in 𝐵 remaining in the local coordinate chart. Then the induced monodromy
diffeomorphism𝑊 →𝑊 is given by the time-one map of the Hamiltonian system:

𝛾′(𝑡) = ∑𝑘
𝑖=1 𝑥

′
𝑖
(𝑡)𝑋𝐻𝑖 (𝛾(𝑡)).

Indeed, the velocity of (𝑥 (𝑡), 𝛾(𝑡)) is Ω-orthogonal to 𝑉 = 𝑇𝑊 when Ω = pr∗𝜔 − d𝔞,
as can be checked directly. As a consequence, the monodromy of any Hamiltonian
connection along any path is a Hamiltonian diffeomorphism.
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A.2.3. Curvature of a Hamiltonian connection is Hamiltonian. Letℌ be the Hamiltonian
connection induced by a one-form 𝔞 as above. Then:

(28) 𝑅ℌ (𝜕𝑖, 𝜕 𝑗) 𝜔 = −d(𝜕𝐻𝑖
𝜕𝑥 𝑗

−
𝜕𝐻 𝑗

𝜕𝑥𝑖
+
{
𝐻𝑖, 𝐻 𝑗

}
) = −d𝔯(𝜕𝑖, 𝜕 𝑗).

In particular, the vertical curvature vectors define a Hamiltonian vector field on𝑊, and
the generating Hamiltonians can be encoded as a curvature two-form 𝔯. See [KS21,
pp. 3293] for similar formula.
Note that if ℌ is flat, then 𝔯 is not necessarily zero, but is the pullback of a two-form
from 𝐵 (assuming 𝑊 is connected). Typically the way to ensure that 𝔯 = 0 for flat
connections is to enforce some normalization conditions on the Hamiltonian functions
appearing in 𝔞; see §A.2.6.

A.2.4. Coordinate changes for Hamiltonian connections. The following lemma is key for
constructing and manipulating Hamiltonian connections; it ensures that the class of
Hamiltonian connections is closed under a large family of coordinate changes.

Lemma A.1. Let 𝐸 = 𝑊 × 𝐵. A contractible family 𝑔𝑥 of Hamiltonian diffeomorphisms,
where 𝑥 ∈ 𝐵, has a total map 𝑔(𝑤, 𝑥) = (𝑔𝑥 (𝑤), 𝑥) which satisfies:

𝑔∗pr∗𝜔 = pr∗𝜔 + d𝔟,
where 𝔟 is a one-form which vanishes on the vertical bundle.

Proof. Indeed, if 𝑔𝑥,𝑡 is a path of systems 𝑔𝑥,1 = 𝑔𝑥 and 𝑔𝑥,0 = id, then differentiating
𝑔𝑡 (𝑤, 𝑥) = (𝑔𝑥,𝑡 (𝑤), 𝑥) with respect to 𝑡 yields:

(29)
𝜕

𝜕𝑡
𝑔∗𝑡 pr

∗𝜔 = d(𝑔∗𝑡 pr∗[d𝐻𝑥,𝑡]) = −d(
𝑛∑︁
𝑖=1

𝜕

𝜕𝑥𝑖
(𝐻𝑥,𝑡 ◦ 𝑔𝑥,𝑡)d𝑥𝑖) = d𝛽𝑡,

where 𝐻𝑥,𝑡 are the generators of the systems 𝑡 ↦→ 𝑔𝑥,𝑡. The existence of the path 𝑔𝑥,𝑡 is
what we mean when we say 𝑔𝑥,𝑡 is a contractible family.
Integrating 𝛽𝑡 over 𝑡 ∈ [0, 1] constructs the primitive one-form 𝔟 which vanishes on
the vertical bundle. In particular, if ℌ2 is a Hamiltonian connection, then ℌ1 = 𝑔−1∗ ℌ2
is also Hamiltonian. □

A.2.5. Contact-at-infinity Hamiltonian connections. A Hamiltonian connection ℌ is
called contact-at-infinity if the one-form 𝔞 satisfies that 𝔞(𝑋) is one-homogeneous with
respect to the Liouville flow, up to the addition of a function which is constant outside
of a compact set, for all tangent vectors 𝑋 ∈ 𝑇𝐵𝑥 . Here 𝔞(𝑋) is defined by lifting 𝑋
arbitrarily to a family of vectors along the fiber𝑊 × {𝑥}.
Similarly, one says that ℌ is 𝛼-Reeb outside of Ω(𝑟0 + 1) provided each function 𝔞(𝑋)
equals 𝑟, up to the addition of a function which is constant outside of Ω(𝑟0 + 1), for all
tangent vectors 𝑋 ∈ 𝑇𝐵𝑥 . Here recall that Ω(𝑟0 + 1) is the starshaped domain and 𝑟 is
the radial function associated to the Reeb flow for 𝛼, as explained in §2.1.4.
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If Ham(𝑊) denotes the group of contact-at-infinity Hamiltonians, then contractible
families 𝑔𝑥 ∈ Ham(𝑊) preserve the class of contact-at-infinity Hamiltonians, as can be
checked by the formula for 𝔟 in §A.2.4.
Similarly, the group Ham(𝑊; 𝑅𝛼, 𝑟0 + 1) of Hamiltonian diffeomorphisms which agree
with an 𝛼-Reeb flow outside of Ω(𝑟0 + 1) acts on the space of connections which are
𝛼-Reeb outside of Ω(𝑟0 + 1).
Henceforth, we fix the parameter 𝑟0 and say ℌ is 𝛼-Reeb when it is 𝛼-Reeb outside of
Ω(𝑟0 + 1). The consideration of this particular class of connections is important for
establishing the energy estimate in §2.5.3.
The results of §A.2.2 specialize and imply that the monodromy of a contact-at-infinity,
resp., 𝛼-Reeb, connection ℌ is valued in Ham(𝑊), resp., Ham(𝑊; 𝑅𝛼, 𝑟0 + 1).

A.2.6. Normalization conditions. We say that a one-form 𝔞 on𝑊 × 𝐵 (which vanishes
on vertical vectors) is normalized if 𝔞(𝑋) is normalized according to §2.2.3 on the fiber
𝑊 × {𝑥} for every vector 𝑋 ∈ 𝑇𝐵𝑥 . Every contact-at-infinity, resp 𝛼-Reeb, Hamiltonian
connection can be generated by such a normalized one-form.
An important property of normalized connectionsℌ is that the corresponding curvature
two-form 𝔯 appearing in (28) is normalized, and if the connection is flat the curvature
is identically zero. Moreover, if normalized one-forms 𝔞 and 𝔟 generate the same
connection ℌ then 𝔞 = 𝔟.

A.2.7. Conjugation of monodromy and coordinate changes. Let ℌ be a flat Hamiltonian
connection on𝑊 × 𝐵. Let 𝑔𝑥 represent a coordinate change as in §A.2.4. Given a path
𝑥 (𝑡) in the base, we have:
𝑔−1𝑥 (1) ◦ (monodromy of 𝑔∗ℌ along 𝑥 (𝑡)) ◦ 𝑔𝑥 (0) = (monodromy of ℌ along 𝑥 (𝑡)).

This observation is used in §2.5.3 to obtain a connection with a desired monodromy.

A.3. Locally trivial flat Hamiltonian connections. In this section, we consider bundles
with structure group Ham(𝑊) or Ham(𝑊; 𝑅𝛼, 𝑟0 + 1). The results in this section are
phrased using Ham(𝑊) for notational simplicity, although the constructions in this
section work equally well if Ham(𝑊) is replaced throughout with Ham(𝑊; 𝑅𝛼, 𝑟0 + 1).

A.3.1. Locally trivial flat connection. Let 𝐸 → Σ be a locally trivial bundle with fiber
𝑊 and structure group Ham(𝑊). An Ehresmann connection ℌ on 𝐸 is called flat if
around each point of the base there is a chart around the point so that the connection
appears flat as in §A.1.3. Such a bundle (𝜋 : 𝐸 → Σ,ℌ) will be called a locally trivial
Hamiltonian bundle with a flat connection.
For example, if one can pass to a subatlas where the changes of trivialization are locally
constant on each intersection 𝑈0 ∩ 𝑈1, then the locally defined flat connections glue
together to form a flat connection ℌ.

A.3.2. Pairs of pants. The pair-of-pants Σ is a two-sphere with three punctures; we
can fix this as CP1 with the punctures at 0, 1 and ∞.
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Proposition A.2. There is a simply-connected Riemann surface Σ′ with a free-and-proper
action of the free-group F2 by biholomorphisms, and a biholomorphism Σ′/F2 → Σ. The
monodromy of the covering space around 0 equals the action of the first generator of F2,
and the monodromy around the 1 equals the second generator of F2.

Proof. This is a consequence of the theory of covering spaces in the context of Riemann
surfaces; see, e.g., [Don11]. □

This proposition gives an efficient construction of a smooth family of flat Hamiltonian
connections with any desired monodromy around 0 and around 1:

Proposition A.3. Fix any choice of monodromy F2 → Ham(𝑊). The diagonal quotient:
𝐸 : (𝑊 × Σ′)/F2 → Σ′/F2 ≃ Σ

is a locally trivial Hamiltonian bundle with a flat connection. Moreover, this bundle is
trivial as a bundle with Hamiltonian structure group.

Proof. Take contractible open sets 𝑈 in Σ which admit smooth lifts to Σ′; each choice
of lift gives an identification of 𝐸 |𝑈 with 𝑊 × 𝑈. It is straightforward to check that
transition functions are locally constant, which completes the first part of the proof (by
the definition of locally flat in §A.3.1).
For the second part, note that the map F2 → Ham(𝑊) can be continuously homotoped
to the constant map through group homomorphisms. This process produces a bundle
over Σ × [0, 1]. The bundle restricted to Σ × {1} is isomorphic to the restriction over
Σ × {0}, which is clearly the trivial bundle Σ ×𝑊. □

A.3.3. Locally trivial Hamiltonian bundles on the pair-of-pants are trivial. Fix a Hamil-
tonian bundle with flat connection over the pair-of-pants 𝐸 → Σ. The goal in this
section is to prove the following result allowing us to realize every locally trivial bundle
with flat connection as a trivial bundle with a Hamiltonian connection in the sense of
§A.2.

Proposition A.4. Every locally trivial Hamiltonian bundle with flat connection ℌ on the
pair-of-pants Σ, as in §A.3.1, can be trivialized in such a way that ℌ is Hamiltonian
with connection form Ω = pr∗𝜔 − d𝔞, as in §A.2. Moreover, we may suppose that 𝔞 is
normalized as in §2.2.3.

Proof. Using the covering space furnished by Proposition A.2, one can show that 𝐸 is
isomorphic to one of the bundles constructed in Proposition A.3, and hence is trivial, in
the category of fiber bundles with structure group Ham(𝑊).
Standard ideas in Cech-cohomology imply that the cocycle of transition functions
derived from any atlas is trivial. One can pick an atlas {(𝑈𝛼, 𝜂𝛼)} where the transitions
are constant on each intersection. The triviality of the cocycle implies the existence of
maps 𝑔𝛼 : 𝑈𝛼 → Ham(𝑊) so that 𝑔𝛽𝑔−1𝛼 = 𝑔𝛼𝛽 = 𝜂𝛽𝜂

−1
𝛼 . Note that 𝑔𝛼 are not required

to be constant. Consider 𝑔𝛼 as inducing maps 𝑔𝛼 : 𝑈𝛼 ×𝑊 → 𝑈𝛼 ×𝑊.
In the following, suppose that the atlas uses a good open cover as in [BT82, §5], i.e.,
suppose that every finite intersection of open sets in the cover is empty or contractible.
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Consider the map 𝐸 → Σ ×𝑊 which on 𝜋−1(𝑈𝛼) equals 𝑔−1𝛼 𝜂𝛼. This is well-defined,
since on the intersection 𝑈𝛼 ∩ 𝑈𝛽 we have 𝑔−1

𝛽
𝜂𝛽 = 𝑔−1𝛼 𝜂𝛼. Since the charts 𝜂𝛼 take ℌ

to the standard flat connection, the induced connection on 𝑈𝛼 × Σ appears in the form:
(𝑔−1𝛼 )∗(standard flat connection).

As in §A.2.4, such a connection is Hamiltonian for Ω𝛼 = 𝑔∗𝛼(pr∗𝜔) = pr∗𝜔 − d𝔞𝛼.
Following §2.2.3, the Hamiltonian functions 𝔞𝛼(𝜕𝑠), 𝔞𝛼(𝜕𝑡) are chosen to be normalized
in each fiber {𝑧} ×𝑊.
The connection two-forms Ω𝛼,Ω𝛽 necessarily agree on their overlap because:

(𝑔−1𝛼 )∗(Ω𝛼 − Ω𝛽) = pr∗𝜔 − (𝑔𝛽𝑔−1𝛼 )∗pr∗𝜔 = pr∗𝜔 − 𝑔∗𝛼𝛽pr
∗𝜔 = 0,

using that 𝑔𝛼𝛽 is constant.
Writing Ω𝛼 = pr∗𝜔 − d𝔞𝛼, we have that 𝜆𝛼𝛽 = 𝔞𝛼 − 𝔞𝛽 is closed on each intersection.
Since 𝜆𝛼𝛽 vanishes on vertical direction, it is exact, and can be written as 𝜆𝛼𝛽 = d 𝑓𝛼𝛽
where 𝑓𝛼𝛽 is an R-valued function pulled back from the base 𝑈𝛼 ∩ 𝑈𝛽 (again, using
that𝑊 is connected).
The normalization conditions imply that 𝑓𝛼𝛽 is constant, as follows. Compute

𝜕 𝑓𝛼𝛽

𝜕𝑥𝑖
= 𝜆𝛼𝛽 (𝜕𝑖) = 𝔞𝛼(𝜕𝑖) − 𝔞𝛽 (𝜕𝑖).

If𝑊 is compact, integrate this over the fiber to conclude that 𝑓𝛼𝛽 is constant. If𝑊 is
non-compact, use that the right-hand side is one-homogenous (in the ends of the fibers)
while the left hand side is constant on each fiber; so that the left hand side must be zero.
In particular, d 𝑓𝛼𝛽 vanishes identically, and 𝔞𝛼 = 𝔞𝛽 holds on the overlap. Hence there
is a globally defined 𝔞 so that ℌ is the Hamiltonian connection for Ω = pr∗𝜔 − d𝛼. □

A.3.4. Families of flat connections parametrized by their monodromy. Pick Hamiltonian
systems 𝜑0,𝜏 and 𝜑1,𝜏, giving a family of homomorphisms F2 → Ham(𝑊). As in the
proof of Proposition A.3, this produces a bundle 𝐸 over Σ × [0, 1], namely, the one
obtained by a diagonal quotient of [0, 1] × Σ′ ×𝑊 by F2.
The restriction 𝐸𝜏 over Σ × {𝜏} has an induced flat connection ℌ𝜏 whose monodromies
around 0 and 1 are given by 𝜑0,𝜏 and 𝜑1,𝜏.
The bundle over Σ× [0, 1] can be trivialized (see Proposition A.3) and the argument in
§A.3.3 shows that we can express ℌ𝜏 as the Hamiltonian connection associated to some
family of one-forms 𝔞𝜏. The Cech-cohomology arguments can be done parametrically
in 𝜏 so that one may assume that 𝔞𝜏 is smoothly varying.
One should note that a trivial bundle with flat Hamiltonian connection over a pair-
of-pants actually determines a monodromy representation valued in the universal
cover of Ham(𝑊). Standard arguments in the theory of fiber bundles imply that the
monodromy representation of ℌ1 is given by 𝑥 ↦→ (𝜑1,1, [𝜑1,𝑡]) and (𝜑1,1, [𝜑1,𝑡]). In
other words, the systems used to trivialize the bundle appear in the extension of the
monodromy representation to the universal cover.
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A.3.5. Connectivity in space of flat connections on the pair of pants. The following
proposition is used in §2.5.3, and is of theoretical importance since it ensures that the
operations on Floer cohomology defined using a pair-of-pants do not depend on the
precise choice of Hamiltonian connection.

Proposition A.5. Let Σ be the pair-of-pants and letℌ0,ℌ1 be two Hamiltonian connections
on𝑊 × Σ with the same monodromy representation in the universal cover of Ham(𝑊).
Then there is a smooth deformation ℌ𝜏 of Hamiltonian connections interpolating from ℌ0
to ℌ1, with a fixed monodromy representation.

Proof. Since ℌ0,ℌ1 define the same monodromy representation in the universal cover,
there is a smooth map 𝑔 : Σ → Ham(𝑊) so that 𝑔∗ℌ0 = ℌ1 and which admits a lift
to the universal cover. Since Σ is homotopy equivalent to a wedge of circles and the
universal cover is simply connected, there is a deformation 𝑔𝜏 so 𝑔1 = 𝑔 and 𝑔0 = id.
Then (𝑔𝜏)∗ℌ0 is the desired family of connections. □

A.3.6. Cylindrical ends. Let Σ = [𝑎, 𝑏] × R/Z be a cylinder and suppose that ℌ is a
flat Hamiltonian connection on Σ ×𝑊. Introduce the notation ℌ(𝜑𝑡) for the standard
flat connection with 𝔞 = 𝐻𝑡d𝑡 where 𝐻𝑡 is the normalized generator of 𝜑𝑡.
The results of this section explain how to use the coordinate changes described in
§A.2.4 to make ℌ appear in the standard form ℌ(𝜑𝑡) in a given cylindrical end.

Proposition A.6. If the monodromy of ℌ around any circle {𝑠0} × R/Z, in the universal
cover, is represented by a conjugate of the system 𝜑𝑡, then one can find a contractible
family 𝑔 : Σ → Ham(𝑊) so that 𝑔−1∗ ℌ = ℌ(𝜑𝑡).
Proof. Suppose 𝑎 = 0, 𝑏 = 1 and 𝑠0 = 0 for simplicity. Let 𝜓𝑠,𝑡 be the monodromy of ℌ
along the path {𝑠} × [0, 𝑡], and let 𝜅𝑠,𝑡 be the monodromy along the path [0, 𝑠] × {𝑡}.
By assumption, there is a homotopy 𝜑𝜏

𝑡 starting at 𝜑0,𝑡 = 𝜌𝜑𝑡𝜌
−1 so that 𝜑1,𝑡 = 𝜓0,𝑡;

the homotopy has fixed endpoints at 𝑡 = 0, 1.
Let 𝑔𝜏(𝑠, 𝑡) = 𝜅𝜏𝑠,𝑡 ◦ 𝜑𝜏

𝑡 ◦ 𝜌 ◦ 𝜑−1
𝑡 . Then 𝑔1(𝑠, 𝑡) = 𝑓𝑠,𝑡 ◦ 𝜑−1

𝑡 where 𝑓 satisfies:
ℌ = 𝑓∗ℌ(id).

On the other hand, since:
(𝜑−1

𝑡 )∗pr∗𝜔 = pr∗𝜔 − pr∗𝜔(−, 𝑋𝑡) ∧ d𝑡 = pr∗𝜔 − d(𝐻𝑡d𝑡),
it follows that (𝜑)∗ℌ(id) = ℌ(𝜑) and thus 𝑔∗ℌ(𝜑) = ℌ. Since 𝑔0 = 𝜌 is constant and
Ham(𝑊) is connected, 𝑔 = 𝑔1 is a contractible family, as desired. □

A.3.7. Families of cylindrical ends. The construction in §A.3.6 can be done parametri-
cally; i.e., if 𝔞𝜏 is a smooth family of connection one-forms for the cylinder and 𝜑𝜏,𝑡 is
a smooth family of systems representing the monodromy around a circle {𝑠0} × R/Z,
one can find a smooth family 𝑔𝜏 so that 𝑔−1𝜏,∗ℌ = ℌ(𝜑𝜏).
Let Σ be the pair-of-pants, and consider three cylindrical ends Σ0, Σ1, Σ∞ around
the three punctures. The parametric construction in §A.3.4 takes as input two paths
𝜑0,𝜏, 𝜑1,𝜏 and produces a family of flat connectionsℌ𝜏 on Σ (described by 𝔞𝜏). Applying
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a cut-off version of the coordinate changes from §A.3.6 in each end allows us to assume
that ℌ𝜏 is given by 𝐻0,𝑡d𝑡, 𝐻1,𝑡d𝑡, respectively, in each end Σ0, Σ1.
In the end Σ∞, the monodromy representation is conjugate to 𝜑∞,𝑡 = 𝜑0,𝑡 ◦ 𝜑1,𝑡 (note
that the reverse composition is in the same conjugacy class). Thus we can use the
coordinate change from §A.3.6 to assume that ℌ𝜏 = ℌ(𝜑∞,𝑡) in Σ∞.
A slight variation used in §2.5.3 is the following: let 𝜅 : [0, 1] → [0, 1] be a smooth
cut-off function so 𝜅 = 0 in a neighborhood of 0 and 𝜅 = 1 in a neighborhood of 1.
Then 𝜑∞,𝑡 and 𝜑∞,𝜅(𝑡) have the same time-1 map in the universal cover, and so by the
coordinate changes in §A.2 we can assume that ℌ𝜏 appears as ℌ(𝜑∞,𝜅(𝑡)) in Σ∞.

A.4. Floer’s equation and Hamiltonian connections. Let ℌ be a Hamiltonian connection
on𝑊 ×Σ → Σ where (Σ, 𝑗) is a Riemann surface. Pick a Σ-dependent 𝜔-tame complex
structure 𝐽 on 𝑇𝑊. Associated to these choices, let 𝐽ℌ be the unique almost complex
structure on𝑊 × Σ so that:
(i) the fibers𝑊 × {𝑧} ⊂ 𝑊 × Σ are almost complex submanifolds,
(ii) ℌ is a 𝐽ℌ-line, and,
(iii) the projection (ℌ, 𝐽ℌ) → (𝑇Σ, 𝑗) is complex-linear.

A smooth map 𝑢 : Σ → 𝑊 is said to solve Floer’s equation with data (ℌ, 𝐽) provided
the induced section 𝑧 ↦→ (𝑧, 𝑢(𝑧)) ∈ Σ ×𝑊 is 𝐽ℌ-holomorphic. The moduli space of
all solutions is denoted M(ℌ, 𝐽).
See [Gro85, §1.4.C’,§2.2] and [MS12, §8] for related discussion.
In the main body of the text, we only consider the case when 𝐽 is fixed; although we
implicitly consider one-parameter variations of 𝐽 in §2.3.4.

A.4.1. Energy density for Floer’s equation. Let Πℌ : 𝑇𝐸 → 𝑇𝑊 be the projection whose
kernel is ℌ. Define the energy density two-form for Floer’s equation by the formula
𝜔(Πℌd𝑢,Πℌd𝑢). It is straightforward to show that the energy density is everywhere
non-negative (with respect to the complex orientation of Σ).
Define the energy 𝐸(𝑢) to be the integral of the energy density two-form. Note that
the energy of a solution 𝑢 is zero if and only if 𝑢 is a flat section.
The prototypical example is when Σ = R × R/Z, 𝔞 = 𝐻𝑡d𝑡, so that the energy density
is given by ∥𝜕𝑠𝑢∥2𝐽 and flat sections are 𝑢(𝑠, 𝑡) = 𝛾(𝑡) where 𝛾(𝑡) is an orbit of the
system 𝐻𝑡.

A.4.2. Energy identity for Floer’s equation. In local holomorphic coordinates 𝑠 + 𝑖𝑡, so
𝔞 = 𝐾d𝑠 + 𝐻d𝑡, we have:

Πℌ = dpr𝑊 − 𝑋𝐾 (𝑢)d𝑠 − 𝑋𝐻 (𝑢)d𝑡,
since 𝜕𝑠 + 𝑋𝐾 and 𝜕𝑡 + 𝑋𝐻 are tangent to ℌ. In particular the local contribution to the
energy is given by:

𝐸(𝑢) =
∫

𝜔(𝜕𝑠𝑢 − 𝑋𝐾 , 𝜕𝑡𝑢 − 𝑋𝐻).
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Standard computations gives:

𝐸(𝑢) =
∫

𝑢∗𝜔 − 𝜕𝑠(𝐻 (𝑢)) + (𝜕𝑠𝐻) (𝑢) + 𝜕𝑡 (𝐾 (𝑢)) − (𝜕𝑡𝐾) (𝑢) + 𝜔(𝑋𝐾 , 𝑋𝐻)d𝑠d𝑡.

Simplifying, one obtains:

(30) 𝐸(𝑢) =
∫

𝑢∗𝜔 − 𝑢∗d𝔞 + 𝑢∗𝔯,

where 𝔯 = (𝜕𝑠𝐻−𝜕𝑡𝐾+𝜔(𝑋𝐾 , 𝑋𝐻))d𝑠d𝑡 is the curvature two-form valued in Hamiltonian
functions (generating the curvature two-form valued in vector fields); see (28). Patching
together these local contributions proves the full energy is given by the same formula.
See [MS12, Lemma 8.1.6] and [Sei08b, §8g] for similar identities.
As a consequence, if ℌ is a flat Hamiltonian connection and 𝔞 is normalized (so 𝔯 = 0)
then we have the energy identity for a flat Hamiltonian connection:

(31) 𝐸(𝑢) = 𝜔(𝑢) −
∫
𝜕Σ
𝑢∗𝔞.

Here we treat 𝜕Σ as a “boundary in the sense of currents,” i.e., as a formal object
satisfying

∫
𝜕Σ
𝑎 =

∫
Σ
d𝑎 for one-forms 𝑎. For example, if Σ = R×R/Z, and ℌ = ℌ(𝜑𝑡),

then we recover the standard energy identity:

𝐸(𝑢) = 𝜔(𝑢) +
∫

𝐻𝑡 (𝛾−) − 𝐻𝑡 (𝛾+) d𝑡 = A𝜑𝑡
(𝛾−) − A𝜑𝑡

(𝛾+),

noting that the action difference is independent of the choice of capping of 𝛾+.

A.4.3. Coordinate changes and Floer’s equation. Let Σ be a surface with boundary 𝜕Σ,
and let ℌ be a Hamiltonian connection over Σ. Let 𝐿 ⊂ 𝑊 be a Lagrangian, and
abbreviate 𝐿 = 𝐿 × 𝜕Σ so that we also think of 𝐿 as a subset of the total space.
If 𝑔 : Σ → Ham(𝑊) is a homotopically trivial map, as in §A.2.4, then 𝑢 solves Floer’s
equation for ℌ, 𝑔−1∗ 𝐽 with boundary values in 𝑔−1(𝐿) if and only if 𝑔(𝑢) solves Floer’s
equation for 𝑔∗ℌ, 𝐽 with boundary values in 𝐿. This implies that energy bounds for
solutions to M(ℌ, 𝑔−1∗ 𝐽, 𝑔−1(𝐿)) are equivalent to energy bounds for M(𝑔∗ℌ, 𝐽, 𝐿).
This observation is used in §2.5.3.
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