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HAMILTONIAN LINKING AND SYMPLECTIC PACKING

DYLAN CANT

ABSTRACT. In this short note, we make an observation relating symplectic
packings of the standard symplectic ball by two sets and Hamiltonian linking.

1. Introduction

1.1. Statement of results. Denote by G be the group of compactly supported Hamil-
tonian diffeomorphisms of R2", i.e., the group of time-1 maps of compactly sup-
ported Hamiltonian isotopies.

Let us say that two disjoint compact subsets K1, Ko C R?" are Hamiltonian un-
linked provided there is ¢ € G such that:

»(K1) and p(K3) lie on opposite sides of a hyperplane.
Otherwise we say they are Hamiltonian linked.

There is an obvious obstruction to being Hamiltonian unlinked, namely the two
sets must be unlinkable via a compactly supported smooth isotopy.

Denote by ¢(K;) the spectral capacity of K;, which is simply the Floer theory
Versiorﬂ of Viterbo’s generating function capacity introduced in [Vit92]; in this
paper we follow the conventions of [CZ24]. This is a normalized symplectic
capacity. Then:

Theorem 1. Suppose K1, Ko C B(a) are compact disjoint subsets of the standard
symplectic ball (of capacity a > 0). Either:

(1) K1, Ky are Hamiltonian linked,
(2) ¢(Ky) + c¢(K2) < a;

in other words, if two sets are Hamiltonian unlinked, then they obey a packing
inequality; if two sets break the packing inequality, then they must be Hamiltonian
linked.

Remark. The same result holds if B(a) is replaced by a domain Q satisfying a =
c(Q) = v(92), where v(Q) is the spectral diameter (i.e., the diameter of the space of
isotopies supported in © with respect to Viterbo’s spectral metric). In [AAC24] it
is shown that a = ¢(B(a)) = v(B(a)).

Corollary 2. Let K C 0B(a) be a compact set with capacity ¢(K) = b (there exist
examples where K is a Lagrangian and b= a/2). Then the smaller ball B(c) C B(a)
is Hamiltonian linked with K if ¢ > a —b. O

In dimension n = 1, this follows from smooth topology. In higher dimensions n > 1,
the sets K and B(c) can be chosen to be smoothly unlinked, and so it produces a
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camel type theorem: the ball B(c) cannot be isotoped to v + B(c) through balls of
capacity ¢ in the complement of K, if v is sufficiently large.

Let us say that a compact domain Q C C" is boundary minimal if:
c(Q\U) < ()

for all open sets U such that U N 92 # (). Then we recover a result of [Zil16] (in
the case 2 = B(a)); his argument used displacement energy while ours uses the
packing versus linking theorem.

Corollary 3. Any domain Q satisfying c¢(Q) = v(Q2) is boundary minimal.

Proof of Corollary[3 If U is open and has non-empty intersection with 9, then
inside of U N Q one can find a small ball which is unlinked with Q \ U. The result
then follows from the packing inequality. O

Boundary minimality is interesting as it implies the following closing-type lemma
(see [Iril5l [CDPT24| Xue22| for similar results):

Lemma 4. Suppose that @ C C" is a symplectically embedded Liouville domain
which is boundary minimal. Let « be the intrinsic contact form on O (using the
Liouville domain structure of Q). Then, for any non-empty open subset V. C 0%
and any non-negative non-constant function f supported in V, there is a Reeb orbit
7 for the Reeb flow associated to e~ o which passes through V., for some s € (0,1].
Moreover:
period of v+ T'(y) < ¢()

where T' is the cohomology class [Ac» — Aq] € Hig (). In particular, if the embed-
ding is exact, one can bound the period of v from above and conclude there is an
orbit of a with period < ¢(Q) passing through any point of 0.

This is proved in As explained to the author by S. Matijevié, the last sentence
of the lemma, together with the results of [AK22l [AB23], implies the following
characterization of uniformly convex Zoll domains:

Theorem 5. A uniformly convexr domain 2 is Zoll if and only if it is boundary
minimal.

Proof. If a uniformly convex domain is boundary minimal, Lemma [f] and the fact
that ¢(Q2) is the shortest period of a Reeb orbit (proved in [AK22]) imply that
Q is Zoll. Conversely, [AB23] proved that a uniformly convex Zoll domain is a
local maximizer for the systolic ratio. Shrinking the domain slightly will decrease
the volume, and so the systole must also decrease. Since small variations remain
uniformly convex, it follows (again from [AK22]) that ¢(£2) decreases, as desired. O

Our next result concerns the areas of J-holomorphic disks with boundary on La-
grangians. Here J is an w-tame (and standard at infinity) almost complex structure
(we call such a J admissible).

Corollary 6. Let K C 0B(a) be a subset with capacity b. Then each Lagrangian L
in the interior of B(a) either:

(1) bounds a non-constant J-holomorphic disk with area at most a — b,
(2) is linked with K,

where J is any admissible almost complex structure.

When n = 1 the result is trivial as every subset of B(a) is smoothly linked with K,
or b= 0. On the other hand, when n > 1, the result is symplectic in nature, as K
and L are smoothly unlinked unless K # 9B(a). We prove Corollary |§| in
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Remark. Perhaps, when n > 1, every Lagrangian L in the interior of B(a) is
unlinked with some K with ¢(K) > a/2, in which case one proves the conjecture
about the areas of disks being less than a/2; see

Our next result discusses a case when sets are automatically unlinked.

Lemma 7. If K1 and Ky are disjoint compact sets, each symplectomorphic to a
starshaped set, then they are Hamiltonian unlinked.

This is shown in Theorem [1| then yields:

Corollary 8. Suppose a = ¢(Q) = v(Q). Two disjoint sets K1,Ky C 2, each
of which is symplectomorphic to a starshaped set, satisfy the packing inequality
(K1) + ¢(K2) < a. O

In fact, the proof of Theorem [I| shows that two disjoint sets K7, Ko which obey
the maximum formula for spectral invariants also obey the packing inequality. It is
known that the class of pairs of subsets of R?” which obey the maximum formula
contains all pairs of the images of two embeddings of Liouville domains which are:

(1) exact [HLRSI16], or
(2) mi-injective on the boundary [GT23],

We note that [HLRS16] also proves the the maximum formula for the generating
function capacity for a pair of subsets of R?” which are separated by a hyperplane.

1.2. Discussion of proof. The key ingredients used to deduce Theorem (1| are:

(1) The fact that the spectral diameter of a ball equals its capacity, i.e., v(B(a)) =
¢(B(a)) = a, proved in [AAC24].

(2) The maximum formula for spectral invariants, proved in [HLRSI6, [Tan22,
GT23).

To deduce Corollary @ one also appeals to the result in [Her04l [CZ24].
1.3. Further questions.

1.3.1. Areas of holomorphic disks. Corollary [6] suggests the question:

Question 1. Is every Lagrangian L in the interior of B(a) Hamiltonian unlinked
with some compact subset K C 0B(a) satisfying ¢(K) > a/2?

As explained above, if the answer is “yes,” then it would solve the following con-
jecture (compare also with [CMIS]):

Conjecture 2. Every Lagrangian L in B?"(a) bounds non-constant J-holomorphic
disks of area at most a/2, for all admissible J, if n > 1.

1.3.2. Minimal sets. An interesting direction raised by Corollary [2] is that 0B(a)
is a minimal compact set for the spectral capacity: any compact subset has a
strictly smaller spectral capacity. Moreover, as explained above, the domain B(a)
is a boundary minimal Liouville domain, which implies some version of the closing
lemma (see Lemma [4]).

Question 3. Which compact sets in R*™ are minimal in the above sense? Which
domains Q are boundary minimal?

It is not hard to see using [LS94] and [Her04, [CZ24] that any compact connected
Lagrangian submanifold is minimal, since removing a small ball will change its
capacity from a positive number to zero. However, the boundary of a polydisk is
never minimal.
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Turning now to Zoll domains, Theorem [5| suggests the question:

Question 4. Does every (uniformly convex) Zoll domain Q satisfy v(2) = ¢(Q) ?

If the answer is “yes,” then () = ¢(Q) gives an alternative “spectral” charac-
terization of when a (uniformly convex) domain is Zoll. It is known by the work
of [GGM21| Mat24, [Mat25] that a uniformly convex domain is Zoll if and only if
the first n Gutt-Hutchings capacities agree (see [GHI8| for the definition of these
capacities). This raises a variant of Question

Question 5. Does every (uniformly convex) domain  with equal first and nth Gutt-
Hutchings capacities satisfy the equality v(2) = ¢(2) ?

The notion of minimality also raises the question of how much the capacity drops
when an open set is removed? On this topic, we prove the following;:

Theorem 9. If0 < k <n, and 0 < by < by < a then:

k
Kby by = 0B(a) N {b1 <> owlal’ < bz}

i=1
satisfies (K py b,) = min{ba,a — by }.

In particular, even though the boundary is minimal, it contains proper compact
subsets of any given smaller capacity. The proof is a simple application of Poisson
commuting partitions of unity (i.e., using the toric structure) and embedding tricks,
and is given in

1.3.3. Strong Arnol’d chord conjecture. Boundary minimal sets are also related to
the strong Arnol’d chord conjecture (see, e.g., [Zil16, Kan23, [KZ24]). Indeed, adapt-
ing the argument of [Zil16], we can prove:

Theorem 10 (Ziltener). Suppose that that Q C R?" is a boundary minimal exactly
embedded Liouville domain, and c(Q) is the minimal period of the Reeb flow on 02
(e.g., if Q is a uniformly convex Zoll domain). Let A C 02 be a Legendrian. Then
A has a Reeb chord of length at most ¢(Q)/2.

Proof. Consider the map A x R/c(2)Z — 02 which evolves A by the Reeb flow.
We have shown already in Lemma [4] that the Reeb flow on 0 is ¢(€2)-periodic,
so the map is well-defined. If this map were injective, then it would produce an
embedded Lagrangian L C 9Q with A(L) = ¢(Q2), as in [Moh01l, [Zil16]. Then by
[Her04l, [CZ24] this implies ¢(L) = ¢(2). However, L C 02 is a proper compact
subset of 99, and so ¢(L) < ¢(2) by boundary minimality, thus the map could not
have been an embedding. Thus there are two distinct points z1,22 € A which lie
on the same Reeb orbit, and this implies a Reeb chord of length < ¢(Q)/2. O

Incidentally, using the projection 7 : dB(1) — CP" !, the fact that Lagrangians
in 9B(1) (for n > 1) bound non-constant J-holomorphic disks of area strictly less
than 1 implies any Lagrangian in K ¢ CP"! bounds a disk of area strictly less
than 1E| Since K also bounds disks with symplectic area 1, it follows that K bounds
a smooth disk with area less than 1/2. This disk can be lifted to 7~ (K) C 9B(1).
Thus we conclude:

Corollary 11. Every Lagrangian in 0B(1), with n > 1, bounds a smooth disk con-
tained in OB(1) with symplectic area at most 1/2.

2Here we note that holomorphic disks of area less than 1 with boundary in @B(1) miss the
origin (by Gromov’s monotonicity theorem [Gro85]) and hence project to smooth disks in CP™~1
under the projection C" \ {0} — CP"™~1.
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This result is certainly known to Ziltener (see [Zil16]), and presumably is known by
other researchers as well. This is related to Conjecture 2] but does not imply it, as
the disk is not a priori representable by a J-holomorphic disk for every admissible
J; moreover the argument applies only to Lagrangians contained in the boundary
of the ball.

The rationality constant p(L) of a Lagrangian L is infimal positive area of a smooth
disk with boundary on L. Thus we have shown that p(L) < a/2 for all L C B(a)
when n > 1. It is natural to compare with [DRI5| [Fai25] and ask the question:

Question 6. Does every Lagrangian in L C B(a) satisfy p(L) < a/2? If yes, are
the Lagrangians L with p(L) = a/2 automatically contained in 0B(a)?

The question is only posed in R?" for n > 1, and the answer is known to be yes in
both cases, in R, by the work of [CM18| [DRI5] [Fai25].

Another consequence of the packing versus linking dichotomy is:

Theorem 12. Suppose that Ay, Ay C OB(1) are disjoint and unlinked Legendrians,
and let « denote the standard contact form on OB(1). Then, for any f > 0, there
exists a chord from Ag U A1 to Ag U Ay of length at most 1/2 with respect to the
contact form e~ fa.

Here two Legendrians in dB(1) are unlinked provided there is a Legendrian isotopy
of the link Ag U Ay sending the components to opposite sides of a hyperplane. We
give the proof in §2.9] This result is interesting because it is stable with respect
to a class of C° small perturbations of the ball (perturbations which push the ball
inwards). It is known that the conclusion of the strong Arnol’d conjecture is not
stable under C° small pertubations; see the discussion in [Kan23| [KZ24].

1.3.4. Can zero capacity set link the ball?
Question 7. If K links the ball B(a), is it necessary that ¢(K) > 07

If the answer is positive, then one resolves the question of Ginzburg asking whether
or not it holds that ¢(N) > 0 for all hypersurfaces N, see [Gin07, §3.3.4] and [CZ24]
§1.4]. Unfortunately, one has:

Theorem 13. For all sufficiently small € > 0, and k < n, the set:
K:@B(a+e)ﬂ{7r|zi|2 =2 foralli=1,...,n— 1}

links the ball and has capacity 2e. Thus there are sets with arbitrarily small capacity
which link the ball.

Proof. The claim about the capacity of K is well-known; indeed, the set is the
elementary torus which has capacity 2e¢ provided € is small enough compared to
a. The linking theorem follows from the failure of the packing inequality between
B(a) and K in B(a + €). O

1.3.5. Widths of domains. Recently, [BT25] have established a general theorem
which states that two domains Vi, V5 in R?" satisfy a max inequality provided that
there exist sufficiently large disjoint thickenings V;(r) defined for r € [0,1]. This
means V;(r) is obtained by flowing V; by a vector field which remains outwardly
transverse to OV;(r) along the flow. Their theorem is expressed in terms the width
of the thickening (see [BT25| Definition 1.2]).
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Unfortunately, their theorem is stated only for non-negative Hamiltonians (our
argument relies on both non-negative and non-positive Hamiltonians). More seri-
ously, the max inequality is not sufficient for our argument to proceed (we require
the max equality). This begs the question:

Question 8. If V1, V5 are disjoint subsets of C™ whose Buhovsky-Tanny widths are
large enough, does it follow that (V1) + c¢(Va) < v(V4 U V) ?
The thickenings considered in the above question should be disjoint.

A related concept to “width” is the maximal size of a disk cotangent bundle one
can embed around a given Lagrangian L; see [Vit90].

1.4. Acknowledgements. The author would like to acknowledge H. Alizadeh, M.
S. Atallah, B. Bramham, O. Cornea, G. Dimitroglou-Rizell, Y. Ganor, V. Humiliére,
S. Matijevi¢, L. Nakamura, S. Nemirovski, R. Leclercq, S. Seyfaddini, E. Shelukhin,
C. Viterbo, and J. Zhang for useful discussions. The author is supported in his
research by funding from the ANR project CoSy.

2. Proofs

We assume the reader is familiar with the set-up of spectral invariants and the
spectral capacity, using the conventions of [AAC24l [CZ24]. To each compactly
supported Hamiltonian isotopy ¢y, which is generated by a compactly supported
family of smooth functions H;, one associates the spectral invariant c¢(p;) of the
unit element in Floer homology for H;. For open sets U, one defines:

c(U) = sup {c(¢¢) : ¢ is supported in U},
and for compact sets K, one defines ¢(K) = inf {¢(U) : K C U with U open}.
2.1. Stability under Hamiltonian diffeomorphisms. One well-known fact that we

will appeal to in our proof is:

Lemma 14. Suppose that g € G and ¢ is a compactly supported isotopy. Then
there is an equality of spectral invariants:

c(gpeg™) = clpr).

Proof. This can be proved using, e.g., a continuity argument and the fact that the
action spectrum of gs¢;g; ! is independent of s, where g5, s € [0, 1], is a Hamiltonian
isotopy generating g. See, e.g., [Vit92, Corollary 4.3] U
2.2. Max formula. The version of the maximum formula we require is:

Lemma 15. If ©g:, 01+ are compactly supported Hamiltonian isotopies, and their
supports lie on opposite sides of a hyperplane, then:

c(po,e1,6) = max {c(po,t), c(p1,6) } -

Proof. As explained in the introduction, this result is not new (and is proved in
[HLRS16, [GT23]), and is the mazimum formula for spectral invariants. O

2.3. The spectral diameter of the ball.
Lemma 16. Suppose that o, is a Hamiltonian isotopy supported in B(a). Then:

c(pr) +clor ) < a.

Proof. This is proved in [AAC24]. O
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2.4. Proof of Theorem We can now prove the main theorem. Suppose that
K1, Ky C Q are disjoint compact sets, and ¢(2) = v(Q2) = a. If they are Hamilton-
ian linked, then we are done. Therefore, assume they are Hamiltonian unlinked.
Then there are disjoint open neighborhoods U;,Us; of K;, Ko which are also un-
linked. Then:

c(K1) + c(Kz2) < c(Ur) + ¢(Uz) = sup c(p1,t) +sup c(pz,1),

where the supremums are over ;; supported in U;. Now let g € G realize the
unlinking of Uy, Us. Then §2.1] implies:

c(pie) = clgpirg ™) for i =1,2.
On the other hand, since g1 +9~" and g, Lg=1 are supported on opposite sides of
a hyperplane, §2.1] and §2:2] imply:
c(p1,4021) = clgpr.epz,97") = max {c(gpr.g™ "), clopsig )}
Similarly:

c(pa07) = clgp2p149 ") = max {c(gpag™ "), clgpr 97} -
Thus: . )
c(pr1,t) +clp2,t) = c(gpr,eg™ ") +clgpa,eg™ )

< clpripay) + clp2ipry) < ay
where we have used v(2) = a in the last line. Taking the supremum over o1 ¢, 2
completes the proof. O

2.5. Proof of Lemma[dl The closing lemma we stated concerns symplectically em-
bedding Liouville domains 2 C C™ which are assumed to be boundary minimal

(e.g., Q = B(a)).
Let Q(sf) C £ be the subdomain obtained by flowing backwards by {¥’s intrinsic
Liouville flow for time sf. Then Ag|ao(ss) = e/ av.

It is well-known that the spectral capacity of Q(sf) C C™ is the period of some
Reeb orbit v, for e=*fa, plus I'(y,) where I' = [Acn — Ag] is a cohomology class,
ie.,
period of v + T'(ys) = ¢(Q(sf)).

The set of periods of orbits which do not pass through V is independent of s, and the
set of periods is closed and nowhere dense. In addition, the values of I" are countable
(when evaluated on elements of H; (€2, Z)). Thus, if v, never passed through V', as s
ranges over (0, 1], then we would conclude that ¢(Q(sf)) was valued in a countable
union of closed and nowhere dense sets. Since s — ¢(§2(sf)) is continuous (as is
easy to prove by monotonicity and the definition of ¢ via outer regularity) it follows
that ¢(2(sf)) is independent of s, contradicting boundary minimality of . O

2.6. Proof of Corollary @ For this we only need to appeal to [Her04, Theorem 1.6]
or [CZ24, Theorem 2|, which relates the areas of holomorphic disks on Lagrangians
to their spectral capacity. To show the statement is not vacuous, let us observe that
one can take K = pr—!(RP" ') where pr : dB(a) — CP"! is the Hopf fibration;
see [Wei77l, [Aud88| [Pol91] O
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2.7. Proof of Lemmam This is a straightforward isotopy extension type result (see,
e.g., [MS12l §3]). Let us consider an embedding:

E=E, UEs: K; UKy — R*"

where K; C R?" are compact starshaped sets (about the origin), and such that E;
extends to a symplectic map on a neighborhood of K; C R?™. Define:

E.=€e"E(e™"z1,e "29).
Then E, is a symplectic isotopy, and w(dE,.(—),,F,) are closed one-forms on a
neighborhood of K;. Thus there is a smooth family of functions H, such that:
E'dH, = w(dE.(—),0-E;)

holds on a neighborhood of K7 LI K5. It follows by the isotopy extension argument
that the Hamiltonian flow by Xpg_ on the interval [0, s] takes Ey to Es.

The image of Es is just a rescaled version of E(e *Kj,e *Ks). The shrunken
images E1(e *K;) and Ey(e *K>) are eventually contained in disjoint balls around
E1(0) and F3(0), and hence they can be separated by a hyperplane. Thus the
rescaled images e® Fy (e *K7) and e’ Fs (e *K3) are also separated by a hyperplane,
as desired. O

2.8. Proof of Theorem EI. Write K = Ky, 5, and let K¢ denote the complement
of K inside of dB(a). It suffices to prove the case by < bs.

Since K C E(bg,...,by,00,...) and K C E(00,...,00,a — by,...), it follows that:
¢(K) <min{a —by,b2}.

Now observe that K¢ splits into two components:
(1) Kt = {Xh 7 laf* < b1} N0B(a),
(2) K = { Sl mlal <a—b2} 00B(a).

We study the Hamiltonian orbit of K°. For simplicity, suppose b1 < a — by. First
translate:

K{— K{+Te, and K5 — K3,
for a large T. Then rotate by element of g € U(n) applied only to the translate of
K¢, where g takes Te, to Te; and e; to —e,; this rotation isotopy occurs in the
complement of K§ provided T" was large enough. Thus we see that the Hamiltonian
orbit of K¢ has a representative contained entirely in the region:

{7r |zn|2 <a-— bg} ,
and hence ¢(K€) < a — by. The other case a — by < by is similar, and we conclude
c(K.) <max{a— by, b1}
Using the fact that K and K¢ are Poisson commuting sets, we have:
a=c(KUK®) <c¢(K)+c(K° <min{by,a — b1} + max{a — by, b1} = a,
and so all inequalities must be equalities. This proves:
¢(K) =min{by,a — b1 },
as desired. (|
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2.9. Proof of Theorem The construction of [Moh01] yields two disjoint La-
grangians inside B(1) of capacities arbitrarily close to the minimal length of a Reeb
chord of Ag U A;. These Lagrangians are unlinked because the Legendrians are
unlinked. Thus the packing inequality holds, and we conclude the minimal length
of a Reeb chord is at most 1/2.

To see why the Lagrangians are unlinked, recall that they are defined as:
L; g :=A; x9([0, R] x [6,1]) — B(1),
where A restricts to xdy where x,y are coordinates on the rectangle. The isotopy:
L;s:= eS/QLi)est

is an exact isotopy — the area bounded by the loop remains constant. For s large
enough, the projections of the Lagrangians to the contact ideal boundary enter
arbitrarily small neighborhoods of the Legendrians. By assumption the Legendrians
are unlinked, and so one can unlink the Lagrangians for s large enough via the
symplectization lift of the isotopy unlinking A;. O
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