
PARAMETRIC GROMOV WIDTH OF LIOUVILLE DOMAINS

FILIP BROĆIĆ AND DYLAN CANT

Abstract. The classical Gromov width measures the largest symplectic
ball embeddable into a symplectic manifold; inspired by the symplectic
camel problem, we generalize this to ask how large a symplectic ball can
be embedded as a family over a parameter space N . Given a smooth map
f : N → Ω, where Ω is a symplectic manifold, we define the parametric
Gromov width Gr(f,Ω) as the supremum of capacities a > 0 for which
there exists a family of balls, parametrized by N , of capacity a whose
centers trace out the map f . For Liouville domains Ω, we establish upper
bounds on Gr(f,Ω) using the Floer cohomology persistence module
associated to Ω. Specializing to fiberwise starshaped domains in the
cotangent bundle T ∗M , we derive computable bounds via filtered string
topology. Specific examples of Ω – including disk cotangent bundles of
thin ellipsoids, open books, and tori – demonstrate our bounds, and
reveal constraints on parameterized symplectic embeddings beyond the
classical Gromov width.

1. Introduction

The symplectic camel theorem (see [EG91, §3.4.B] and [Vit92, MT94]) pro-
duced the first example of a connected symplectic manifold for which the
space of symplectic embeddings of a ball is disconnected. Let us explain
the result in a slightly non-standard way: consider W = R/Z× R2n−1, with
coordinates x1, y1, x2, y2, . . . , xn, yn and the standard symplectic structure.
Define, for n > 1, the space:

X = (W \ {x1 = 0}) ∪ {x2n + y2n ≤ π−1ϵ}.
In words, any loop in X with winding number 1 (relative the R/Z factor)
must pass through the “hole” of capacity ϵ. Then the classical camel theorem
can be stated as:

Proposition 1. If a > ϵ, there does not exist a map F : R/Z × B(a) → X
such that:

(1) t 7→ F (t, 0) has winding number 1 relative the R/Z-factor,
(2) z 7→ F (t, z) is a symplectic embedding B(a) → X for each t,

where B(a) is the ball of capacity a.

The results in this paper provide a framework for detecting such phenomena
in Liouville domains. Our methods are based on Floer cohomology, and
recover Proposition 1.
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Let Ω be a symplectic manifold. Denote by B(a) ⊂ Cn the compact ball
of symplectic capacity a, and denote by B(a,Ω) the space of symplectic
embeddings B(a) → Ω.

A smooth map f : N → Ω is said to lift to B(a,Ω) provided there exists a
smooth map F : N ×B(a) → Ω such that the restriction F (η,−) : B(a) → Ω
is a symplectic embedding for each η ∈ N , and such that f(η) = F (η, 0). It
is necessary that f∗TΩ is symplectically trivializable for such F to exist.

To handle the case when f∗TΩ is not symplectically trivializable, we refine
the notion of lifting. We say f lifts to B(a,Ω)/U(n) provided that:

(1) N admits an open cover by sets Uα,
(2) there are maps Fα : Uα × B(a) → Ω such that Fα(η, 0) = f(η) for

η ∈ Uα, and which are embeddings on each B(a) factor.
(3) there are maps gαβ : Uα ∩ Uβ → U(n) such that:

Fβ(η, z) = Fα(η, gαβ(η)z),

for η ∈ Uα ∩ Uβ and z ∈ B(a).

These conditions implies that the gαβ form a cocycle, and hence define a
unitary bundle over N . The derivatives of the Fα establish a symplectic
isomorphism between this unitary bundle and f∗TΩ.

The parametric Gromov width of f in Ω is defined by the formula:

(1) Gr(f,Ω) := sup{a : f admits a lift to B(a,Ω)/U(n)}.
It is not hard to see that Gr(f,Ω) is invariant under homotopies of f .
Moreover, a simple Moser-type argument proves Gr(f,Ω) > 0 holds for all
maps f . Furthermore, if f∗TΩ is trivializable, then f lifts to B(a,Ω)/U(n)
if and only if it lifts to B(a,Ω).

One obvious choice of f is the inclusion of a point f = [pt], in which case
Gr([pt],Ω) is simply the classical Gromov width of Ω.

The goal of this paper is to provide Floer theoretic upper bounds on Gr(f,Ω)
when Ω is the interior of a Liouville domain. Recall that a Liouville domain
(Ω̄, ω = dλ) is a compact connected 2n-dimensional exact symplectic manifold
with boundary ∂Ω, such that the Liouville vector field Z defined by Z dλ = λ
is outwardly transverse to ∂Ω.

Henceforth we reserve the symbol Ω for the interior of a Liouville domain.

The main examples of Ω we will consider are fiberwise starshaped domains
in cotangent bundles, and the upper bounds we state below ultimately come
from the relationship between string topology and the BV-algebra structure
on Floer cohomology.

1.1. Examples. In this section we state some applications of our methods.
The proofs are contained in §2.2.

1.1.1. Thin ellipsoids 1. Let Ωa be the unit codisk bundle in T ∗Sn associated
to the metric obtained by embedding Sn into Rn+1 as the level set:

{x20 + x21 + · · ·+ a−2(x2n−1 + x2n) = 1},
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where a ≤ 1 and n ≥ 2. Let [Sn] be the inclusion of the zero section Sn → Ω.
We will show:

Theorem 2. Gr([Sn],Ωa) = 2πa. If a ≤ 1, then:

Gr([pt],Ωa) ≤ 4πa,

while, when a = 1, Gr([Sn],Ω1) = Gr([pt],Ω1) = 2π.

The fact that Gr([pt],Ω1) = 2π is known; see [KS21, §6.3].
Remark. It can be shown, by comparison with the unit cotangent bundle of
the cylinder a−2(x2n−1 + x2n) = 1, that, as a→ 0, the ratio Gr([pt],Ωa)/4πa
converges to 1. Indeed, in dimension n = 2, it has been shown in [FRV23]
that the Gromov width of Ωa eventually equals 4πa. This remark illustrates
that the parametric Gromov width can be non-zero and strictly less than
the usual Gromov width.

1.1.2. Thin ellipsoids 2. Let Ωa be the unit codisk bundle in T ∗Sn associated
to the metric obtained by embedding Sn into Rn+1 as the level set:

{x20 + x21 + · · ·+ a−2(x2n−3 + x2n−2 + x2n−1 + x2n) = 1},
with n ≥ 3. In this case our methods give:

Theorem 3. Gr([pt],Ωa) = Gr([Sn],Ωa) = 2πa.

1.1.3. Open books with trivial monodromy. Let (V, ∂V ) be a compact and
connected manifold with boundary and let:

M = (V × R/Z) ∪ (∂V ×D(1))

be considered as a smooth open book with page (V, ∂V ) and trivial mon-
odromy. Let L+ be the set of oriented loops of the form:

(1) {v} × R/Z, v ∈ V ,
(2) {v} × ∂D(r), v ∈ ∂V and r ≤ 1,

which form a singular foliation ofM (the singularities occur along the binding,
where the loops are constant). Similarly let L− be the same set of loops but
with the reverse orientation. For each loop q ∈ L±, pick a parametrization
and define:

(2) ℓΩ(q) =

∫ 1

0
max{

〈
p, q′(t)

〉
: p ∈ Ω ∩ T ∗Mq(t)}dt.

This quantity is independent of the choice of parametrization, and should be
considered as the length measured using Ω. Define:

(3) E± = sup{ℓΩ(q) : q ∈ L±} and e± = inf{ℓΩ(q) : q ∈ L±}.
Our methods give the upper bounds:

Theorem 4. Let [M ] be the inclusion of the zero section, and let [V ] be the
inclusion of the page V × {0}. Then:

(1) Gr([pt],Ω) ≤ E+ + E−,
(2) if ∂V ̸= ∅ then Gr([M ],Ω) ≤ min{E+, E−}, and,
(3) if ∂V = ∅, then Gr([V ],Ω) ≤ min{E+ + e−, E− + e+}.
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There are examples with ∂V ̸= ∅ for which both (1) and (2) are equalities,
and examples with ∂V = ∅ for which both (1) and (3) are equalities.

1.1.4. Product with a torus. The case of M = V × R/Z where ∂V = ∅, one
can use the non-contractibility of the orbits {x}×R/Z to bound the Gromov
width without appealing to the structure of the BV-operator (we will present
an argument which uses only classical displacement energy ideas in §1.4).
However, our methods still give interesting bounds on the parametric Gromov
width which do not seem to be accessible with the more classical methods of
§1.4. Indeed, part (3) of Theorem 4 is already such a result. In this section
we will state additional results for manifolds of the form M = V ×T d, where
V is a closed manifold.

Fix a fiberwise starshaped domain Ω ⊂ T ∗(V × T d). In the following, the
class [V × T k] represents the inclusion V × T k → V × T d, where T k ⊂ T d is
the subset of points of the form (x1, . . . , xk, 0, . . . , 0). We also denote by:

L− = {loops of the form t ∈ R/Z 7→ (v, x1, . . . , xd−1,−t)},

Lk
+ = {loops of the form t ∈ R/Z 7→ (v, 0, . . . , 0, xk+1, . . . , xd−1, t)},

where v ∈ V , and where we require that k < d. Let E− be the maximum
ℓΩ-length of loops in L− and Ek

+ the maximum ℓΩ-length of loops in class

Lk
+, similarly to (3).

Theorem 5. With the notation set in the preceding paragraph, we have:

Gr([T k],Ω) ≤ E− + Ek
+,

where [T k] is represented by x 7→ (v0, x1, . . . , xk, 0, . . . , 0) for some basepoint
v0 (the homotopy class is independent of v0).

This result may seem abstruse; however, in the case when V = pt and k = 1
we should note that it obstructs a loop of symplectic balls similarly to the
classical camel theorem Proposition 1. In fact, this example will be used to
prove Proposition 1 and the argument is given in §2.2.6.

1.1.5. Non-orientable surfaces. Let Σ be a compact non-orientable surface,
and let Ω ⊂ T ∗Σ be a fiberwise starshaped domain. Define:

L = {set of loops q : R/Z → Σ such that q∗TΣ is non-orientable},
and let:

E = inf{ℓΩ(q) + ℓΩ(q̄) : q ∈ L},
where q̄ denotes the loop q traversed in reverse. Then our methods bound
the parametric Gromov width for the inclusion of the zero section [Σ]:

Theorem 6. With the above notation, Gr([Σ],Ω) ≤ E.

This theorem is interesting because it applies to surfaces with negative
curvature, where it is generally hard to bound symplectic capacities. It is
also interesting to ponder the role of non-orientability. For instance, since
certain non-orientable surfaces Σ embed as Lagrangians in C2, the Hofer-
Zehnder capacity of any disk cotangent bundle over such Σ is finite. However,
it seems to be an open question whether the same fact is true for orientable
surfaces of genus at least two (see, e.g., [Bim24, pp. 105]).
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1.2. Floer cohomology persistence module. Let W be the completion of Ω̄
obtained by attaching the symplectization end ∂Ω× [1,∞) to Ω̄ in such a
way that Z extends to r∂r, where r is the projection to [1,∞), and such that
the extension of Z is a Liouville vector field.

Let H be the space of all Hamiltonian functions H such that H = cr holds
outside of a compact set, for some c ∈ R.
Fix an almost complex structure J which is invariant under the flow by Z
in the end. For a time-dependent family of Hamiltonian functions Ht ∈ H,
whose flow φt has a non-degenerate time-1 map, and for which the Floer
cohomology chain complex CF(Ht) is well-defined. Here the Floer complex
is the Z/2Z vector space generated by the 1-periodic orbits of φt, and the
differential uses the almost complex structure J . Denote by HF(Ht, J) the
resulting homology.

Using continuation maps, the resulting homology group depends only on
the slope, namely the average value of Ht/r in the end; we denote by Vc the
homology group for a system with slope c. It is well-known that continuation
maps endow c 7→ Vc with the structure of a persistence module, namely, a
functor from (R,≤) → Vect(Z/2Z). Precise details of this construction are
recalled in §3.4.3. The colimit of Vc as c → ∞ is the so-called symplectic
cohomology SH(W ).

This persistence module Vc has three structures relevant to our paper:

(1) the product structure ∗ : Vc1 ⊗ Vc2 → Vc1+c2 induced by the Floer
cohomology pair-of-pants operation,

(2) the BV-operator ∆ : Vc → Vc induced by counting R/Z-families of
Floer cylinders,

(3) the PSS morphism PSS : H∗(W ) → Vc for c > 0;

we refer the reader to [AS10, Abo15] for background on these structures.

Our main result is the following:

Theorem 7. Suppose that ζi ∈ Vci, i = 1, 2, with ci > 0, are such that:

PSS(β) = ∆(ζ1) ∗ ζ2 holds in Vc1+c2 .

If a map f : N → Ω has a non-zero mod 2 homological intersection number
with the cohomology class β ∈ H∗(W ), then Gr(f,Ω) ≤ c1 + c2.

The idea in the proof of Theorem 7 is to define a sort of evaluation map
Vc → Z/2Z using the family of ball embeddings N × B(a) → Ω. The map
is defined and non-trivial on PSS(β) provided that the slope c is smaller
than the capacity a. Arguing using a special action filtration defined using
family Floer cohomology (in the sense of [Hut08]), we will show that the
non-triviality of this map obstructs the existence of a solution to the equation
appearing in Theorem 7. Thus, if the equation can be solved, the slope c
must be larger than the capacity a, as desired.

The details of this argument are given in §3.6.

1.2.1. Relative Hofer-Zehnder capacities. In fact, the argument we give easily
generalizes to the following statement concerning relative Hofer-Zehnder
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capacities. Let us define a Hofer-Zehnder admissible function K : Ω → R
with depth A and well U (a non-empty open set) to be a function such that:

(1) K is compactly supported in Ω,
(2) −A = minK, and the interior of {K = −A} is U ,
(3) XK has no nonconstant 1-periodic orbits.

Then we have:

Theorem 8. Suppose that the hypotheses of Theorem 7 are satisfied for slope
c > 0 and map f : N → Ω. For each Hofer-Zehnder admissible function K
whose well U contains the image of f , we have:

A+Gr(f, U) ≤ c,

where A is the depth of K. In particular, the so-called relative Hofer Zehnder
capacity of f(N) ⊂ Ω is bounded from above by c.

This is proved in §3.6.9. Here we recall the relative Hofer Zehnder capacity of
a pair Y ⊂ X (where X is a symplectic manifold) is simply the deepest depth
A one can achieve amongst Hofer-Zehnder admissible functions K : X → R
subject to the constraint that the well U contains Y .

1.2.2. Dilation classes. The equation appearing in Theorem 7 can be consid-
ered as a generalization of the dilation class equation introduced in [SS12].
Recall that a class ζ is called a dilation class if PSS(1) = ∆ζ. Thus our
theorem implies:

Corollary 9. The existence of a dilation class in the Floer cohomology group
Vc bounds the usual Gromov width by c.

This result is probably not so surprising to experts, as the slopes c for which
dilation classes appear are already used in quantitative symplectic geometry;
see, e.g., [Sei14, Zho21].

The result implied by Theorem 3 on the Gromov width on the cotangent
bundle of the round S3 then follows from the existence of a dilation class in
the Floer cohomology group of the appropriate slope, and the above corollary.
Indeed, in Theorem 3, our proof essentially shows that the dilation class
equation PSS(1) = ∆ζ can be solved in the appropriate group Vc.

It is interesting to compare the situation with our results on tori, as the
cotangent bundles of tori (or more generally K(π, 1) spaces) never have
dilation classes. However, the more general equation in Theorem 7 does
admit solutions (as we exploit in Theorem 5).

There are other classes of manifolds which are known to admit dilation
classes. For instance, [SS12] show that the total space of certain Lefschetz
fibrations admit dilation classes. To apply the above corollary one would
need present the total space as a completion of a Liouville domain, and then
estimate the precise slopes for which the dilation class equation can be solved
in total spaces of Lefshetz fibrations; we do not analyze this question in this
paper.

1.2.3. Subcritical handle attachment. Another interesting class of Liouville
domains where the equation in Theorem 7 can be solved are domains Ω
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obtained by a subcritical handle attachment to a Liouville domain Ω0. Recall
that Ω is obtained by attaching a handle along an isotropic sphere Sk−1 in
the contact boundary ∂Ω0, and if k < n we say the handle attachment is
subcritical. For instance, attaching a 1-handle to a 4-dimensional Liouville
domain is an example of a subcritical handle attachment. For more details
on handle attachments see [Wei91, Cie02, Fau20].

If the attaching sphere is null-homologous in Ω0, then the cocore disk (which
is a properly embedded open disk D2n−k → Ω which intersects the attaching
disk in a single point) defines a cohomology class in Ω. It is known that:

Proposition 10. The cohomology class of the cocore disk β satisfies:

PSS(β) = 0

in Vc for c sufficiently large.

In particular, β satisfies the equation in Theorem 7.

Proof. This follows from [Cie02] (see also [Fau20, Theorem 1.3]) which proves
the so-called Viterbo restriction map from [Vit99] is an isomorphism from
the symplectic cohomology of W0 to the symplectic cohomology of W (the
completions of Ω0 and Ω, respectively).

It is also known that the Viterbo restriction map (V.R.) commutes with PSS
and the pullback map on cohomology associated to the inclusion i : Ω0 → Ω:

(4)

H∗(W ) H∗(W0)

SH(W ) SH(W0),

PSS

i∗

PSS

V.R.

Since i∗ takes β to 0, and V.R. is an isomorphism, it follows that PSS(β) = 0
in SH(W ), as desired. □

Theorem 7 then bounds the parametric Gromov width of any map f : N → Ω
which has a non-zero intersection number with the cocore disk. This brings us
close to the original camel problem Proposition 1; indeed, in one formulation
of the camel problem, the relevant space is the domain obtained by attaching
a 1-handle to a ball, see [MS17, Figure 1.3].

To apply our methods to obtain explicit bounds on the parametric Gromov
width, one would need to set up a careful model for the handle attachment
Ω0 → Ω, and determine at which slopes c the equation PSS(β) = 0 can be
solved in Vc. We do not perform such an analysis in this paper. We will
instead recover Proposition 1 using a string topological computation in §2.2.

1.3. Comparison between string topology and Floer cohomology. For our
applications to fiberwise starshaped domains in cotangent bundles, we will
use the well-established strategy of comparing string topology and Floer
cohomology. The relationship between string topology and Floer cohomology
of cotangent bundles is developed in [Vit99, AS06, SW06, AS10, Abo15].

Our approach is inspired by Shelukhin’s proof of the Viterbo conjecture for
certain manifolds in [She22a, She22b]. In particular, his approach in [She22a]
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exploits the relationship between the string topology and symplectic coho-
mology for cotangent bundles of manifolds which are string point-invertible;
the notion of string point-invertibility is defined in terms the string bracket
which measures the failure of the BV operator ∆ to satisfy the Leibniz rule.

Another inspiration is Irie’s bound on the Hofer-Zehnder capacity of disk
cotangent bundles of manifolds admitting circle actions with non-contractible
fibers [Iri14]; his argument appeals to the aforementioned product structures.

Our framework for string topology is as follows. Let Ω be a fiberwise
starshaped domain in T ∗M . For c > 0 and k = 0, 1, . . . , introduce Zk(Λc) as
the monoid of smooth maps A : P × R/Z →M where:

(1) dimP = k,
(2) ℓΩ(A(x,−)) < c, for all x ∈ P , where ℓΩ is the length function defined

in (2);

here A1 +A2 is the coproduct (P1 ⊔ P2)× R/Z →M .

A cobordism between A1, A2 ∈ Zk(Λc) is a cobordism Q between P1, P2 and
a smooth map C : Q× R/Z →M satisfying:

(2′) ℓΩ(C(q,−)) < c for all q ∈ Q,

and such that C restricts to A1, A2 on the boundary. Define Hk(Λc) be
the quotient of Zk(Λc) by the cobordism relation. The monoid structure
on Zk(Λc) induces on Hk(Λc) the structure of a vector space over Z/2Z.
Write Z(Λc), H(Λc) for the direct sum of the graded pieces Zk(Λc), Hk(Λc),
respectively. If A ∈ Z(Λc), then we write its image α ∈ H(Λc) using the
symbol α = [A]. One thinks of H(Λc) as a convenient proxy for the homology
of the loop space.

The obvious inclusion morphisms H(Λc1) → H(Λc2) endow c 7→ H(Λc) with
the structure of a persistence module defined for c > 0.

As in the Floer cohomology case, this persistence module has three natural
structures:

(1) the Chas-Sullivan product ∗ : H(Λc1)⊗H(Λc2) → H(Λc1+c2),
(2) the BV-operator ∆ : H(Λc) → H(Λc),
(3) an inclusion of constant loops morphism i : H∗(W ) → H(Λc) for

c > 0, which sends a degree d cohomology class to an element in
Hn−d(Λc).

The technical result relating string topology and the Floer cohomology
persistence module is:

Theorem 11. There is a morphism of persistence modules Θc : H(Λc) → Vs
such that:

(1) ∗ ◦ (Θc1 ,Θc2) = Θc1+c2 ◦ ∗ holds on H(Λc1)⊗H(Λc2),
(2) ∆ ◦Θc = Θc ◦∆,
(3) PSS = Θc ◦ i.

The proof of this theorem occupies §4. Most of the arguments are similar
to those in [AS06, AS10, Abo15], with small modifications due to the fact
we work with bordism classes of loops (rather than chains in the Morse
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homology associated to an energy functional). However, working directly
with bordism classes makes the existing proof that the product structures are
identified difficult to implement (the existing proof is not a direct argument,
and instead is based on a homological algebra argument). For this reason, we
provide a new proof that the product structures are identified. Interestingly
enough, this leads to an adiabatic gluing problem, similar to those considered
in [FO97, Ekh07, OZ11]. This argument is given in §4.4.
Combining Theorem 7 and Theorem 11 yields the following upper bound on
the relative Gromov width in terms of string topology:

Theorem 12. Suppose there are classes αi ∈ H(Λci), i = 1, 2, with ci > 0,
such that:

i(β) = ∆(α1) ∗ α2 holds in H(Λc1+c2).

If a map f : N → Ω has a non-zero mod 2 homological intersection number
with the cohomology class β ∈ H∗(W ), then Gr(f,Ω) ≤ c1 + c2. □

This corollary will be the result used in the demonstration of our examples.
One of course has a similar corollary concerning the relative Hofer-Zehnder
capacity by combining Theorem 11 with Theorem 8.

1.4. String topology in non-trivial free homotopy classes. In the case when
there is sufficiently rich string topology in non-trivial free homotopy classes,
one can establish bounds on the Gromov width without appealing to the
BV-operator. For instance, a main result of [Iri14] uses the existence of two
classes αi ∈ H(Λci), i = 1, 2, such that:

(1) α1 ∗ α2 = i([M ]),
(2) αi lies in a non-trivial free homotopy class,

to prove the Hofer-Zehnder capacity of Ω is finite. Typically the way one ob-
tains such classes α1, α2 is via R/Z-actions whose orbits are non-contractible.

Such considerations yield the following variation of Theorem 7:

Theorem 13. Suppose that ζi ∈ Vci(Ω), i = 1, 2, with ci > 0, are such that:

PSS(β) = ζ1 ∗ ζ2 holds in Vc1+c2 ,

and suppose that ζi can be represented by a cycle whose orbits are all non-
contractible.

If a map f : N → Ω has a non-zero mod 2 homological intersection number
with the cohomology class β ∈ H∗(W ), then Gr(f,Ω) ≤ c1 + c2.

The proof is given in §3.6.10. There is also an obvious variation of Theorem 8
based on Theorem 13, whose statement we omit.

In certain cases where orbits are non-contractible, one can prove bounds on
the Gromov width using more classical ideas of Hamiltonian displacement.
Indeed, we have:

Proposition 14. Suppose ft is a smooth isotopy of a closed manifold M such
that f0 = f1 = id and such that the orbits x 7→ ft(x) are non-contractible;
denote by κ the free homotopy class containing these orbits. There exists a
constant const(ft,Ω) such that, for any covering space M ′ → M to which
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loops in κ do not lift, the following holds: if K ⊂ Ω is a compact set which
does admit a lift to K ′ ⊂ T ∗M ′, then K ′ has Hofer displacement energy at
most const(ft,Ω).

Remark. This implies that the Gromov width of Ω is bounded by const(ft,Ω).
It also implies that Lagrangians which lift to T ∗M ′ bound holomorphic disks
with symplectic area at most const(ft,Ω).

Proof. Let Φt the canonical lift of ft, which lifts to an isotopy Φ′
t of T

∗M ′

such that Φ′
1 is a canonical lift of a deck transformation of M ′ →M . Then

Φ′
1 displaces any set K ′ as in the statement. One can cut-off Φ′

t in a uniform
way without changing how it acts on the inverse image of Ω. The cut-off
can be constructed so that it has a finite Hofer length. The desired result
follows. □

1.5. Conventions.

1.5.1. On the cohomology of W . For convenience, we define H∗(W ) to be
the group of smooth proper maps C : S →W , where S is a smooth manifold,
modulo proper cobordisms. This is graded by the codimension of F . This is a
proxy for the cohomology of W . Prototypical examples are the fundamental
class id : W → W and, in the case when W = T ∗M , the inclusion of the
fiber T ∗Mq → T ∗M for some q.
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for many interesting discussions and helpful comments. The first author is
thankful to Kai Cieliebak for useful suggestions. The second author also
wishes to thank Georgios Dimitroglou-Rizell, Tobias Ekholm, and Yin Li, for
key discussions during his visit to Uppsala University. The authors also wish
to thank useful discussions with Alberto Abbondandolo and Johanna Bim-
mermann after the first version of this text was posted. F.B. is supported by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
– 517480394. D.C. is supported by the ANR project CoSy.

2. String topology

In this section, we continue the discussion of string topology from where the
introduction left off.

2.1. Three structures on the string topology persistence module. In order to
apply Theorem 12 it is necessary to explain the three structures ∗,∆, i.

2.1.1. The Chas-Sullivan product. The product α1 ∗ α2 ∈ Hk1+k2−n(Λc1+c2)
of two classes αi ∈ Hki(Λci), i = 1, 2, originally defined in [CS99], can be
thought of as a combination of the intersection product and the Pontrjagin
(concatenation) product.
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It is defined as follows: write αi = [Ai] where A1, A2 are in general position,
which means that the evaluation-at-zero maps:

ei : x ∈ Pi 7→ Ai(x, 0),

i = 0, 1, are transverse to one-another. Such representatives always exist.
Define P3 to be the transverse fiber product of these two maps:

P3 P2

P1 M,

e2

e1

so that P3 is a compact manifold of dimension k1+k2−n, where n = dimM .
Concretely P3 is the submanifold of pairs (x1, x2) ∈ P1 × P2 satisfying the
incidence e1(x1) = e2(x2). Define A3 : P3 × R/Z →M by the formula:

A3(x1, x2, t) :=

{
A1(x1, β(2t)) for t ∈ [0, 1/2],

A2(x2, β(2t− 1)) for t ∈ [1/2, 1],

and extended by 1-periodicity; here β is a standard smooth cut-off function
which equals 0 for t ≤ 0 and equals 1 for t ≥ 1. The cut-offs ensure A3 is
a smooth map. It is important to note that A3 ∈ Z(Λc1+c2), because the
length function is additive under concatenation and invariant under time
reparametrizations.

Lemma 15. The class [A3] in Hk1+k2−n(Λc1+c2) is independent of the choice
of representatives A1, A2 in general position, and depends only on α1, α2.

Proof. This is a straightforward argument in differential topology, similar to
the arguments in [Mil65b], and is left to the reader. □

Observe also that (x3, t) 7→ A3(x3, t + 1/2) represents the class of α2 ∗ α1,
and hence α1 ∗ α2 = α2 ∗ α2, since we can homotope from one to the other
via the formula (x3, t, s) 7→ A3(x3, t+ s).

Similarly, one can prove that ∗ is an associative product, although we leave
the details of this to the reader.

2.1.2. The BV-operator. Like the Chas-Sullivan product, this string topology
operation is introduced in [CS99]. It is defined as follows; given α ∈ Hk(Λc),
write α = [A], where A : P × R/Z →M , and introduce:

∆(A) : (R/Z× P )× R/Z →M given by ∆(A)(θ, x)(t) = A(x, t− θ).

Then ∆(A) ∈ Zk+1(Λc) and we define ∆(α) = [∆(A)]. It is trivial to check
that ∆(α) is independent of the choice of representative A.

2.1.3. Inclusion of the constant loops. Let β ∈ Hd(T ∗M) be represented
by a smooth proper map C : S → T ∗M which is transverse to the zero
section. The class i(β) ∈ Hn−d(Λc) is the image of β under a sort of Thom
isomorphism.
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Define f : P →M via the fiber product:

P S

M T ∗M,

f C

and define A : P × R/Z →M by A(x, t) = f(x). Set:

i(β) := [A] ∈ Hn−d(Λc).

It is straightforward to prove that i(β) in Hn−d(Λc) is independent of the
representative C : S → T ∗M (since, by our proxy definition of H∗(T ∗M),
any two representatives are properly cobordant).

The following discussion sheds light on the map i, and will be used in §4.3
in the comparison between string topology and Floer cohomology; it shows
that i is essentially a Thom isomorphism between cohomology of T ∗M and
homology of M .

Lemma 16. Any class C : S →M is cohomologous to the class C ′ : S′ →M
determined by the fiber product:

S′ T ∗M

P M,

C′

f

where f is defined above.

Proof. Observe that C and C ′ have the same transverse intersection with
the zero section. It follows from a straighforward surgery operation that
C + C ′ (the sum is taken in the cohomology cobordism group) is properly
cobordant to a proper map G : T → T ∗M whose image is disjoint from the
zero section.

Then the map T × [0,∞) → T ∗M given by x, t 7→ ρt(G(x, t)), where ρt is
the Liouville flow, is a proper cobordism from G to ∅ (it is proper because
the image of G is disjoint from the zero section). Thus [C + C ′] = 0, and
hence the desired relation [C] = [C ′] holds. □

2.2. Proofs for §1.1. In this section, we provide the proofs of the Theorems
stated in §1.1. The upper bounds in Theorem 2 will ultimately follow from
Theorem 4. The proof of Theorem 4 is based on a geometric construction of
classes solving the equation appearing in Theorem 12. The proof of Theorem
3 will follow from similar considerations, but with a different classes in the
string topology of open books. We prove Theorem 5 and explain how to
recover Proposition 1 in §2.2.6. Finally we prove Theorem 6 in §2.2.7.

2.2.1. Action classes. One recurring idea is the notion of an action class.
Let ζt :M →M , t ∈ R/Z, be a circle action. The action class is the class:

A :M × R/Z →M given by A(x, t) = ζt(x).

More generally, for any bordism class g : P →M , one defines:

Ag,± : P × R/Z →M given by Ag,±(x, t) = ζ±t(g(x)).
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It is clear that [Ag,±] depends only on the bordism class of g in M .

Denote by Eg,± the maximal ℓΩ-length of the orbits appearing in Ag,±.

Such classes behave well with respect to the Chas-Sullivan product.

Lemma 17. For two transverse maps gi : Pi →M , i = 1, 2, one has:

[Ag1,+] ∗ [Ag2,−] = [g1 ∩ g2] in ΛEg1,++Eg2,−
,

where [g1 ∩ g2] is the class of constant loops:

(x1, x2) ∈ P3 × R/Z 7→ g1(x1) = g2(x2),

where P3 is the fiber product of g1 and g2.

Proof. The evaluation at 0 map of Agi,± is gi. Thus Ag1,+ ∗ Ag2,+ is repre-
sented by the map:

(5) (x1, x2, t) ∈ P3 × R/Z 7→

{
ζβ(2t)(g1(x1)) for t ∈ [0, 1/2],

ζ−β(2t−1)(g2(x2)) for t ∈ [1/2, 1].

We claim this class is homotopic to the class of [g1 ∩ g2] described in the
statement of the lemma; furthermore, we claim the homotopy can be made
inside of ΛEg1,++Eg2,−

. To show this, define G : P3 × [0, 1]× R/Z →M by:

G(x1, x2, s, t) :=

{
ζβ(2st)(g1(x1)) for t ∈ [0, 1/2],

ζβ(s)−β(2st−s)(g2(x2)) for t ∈ [1/2, 1].

This defines a smooth homotopy, within ΛEg1,++Eg2,−
, between the class of

constant loops g1 ∩ g2, at s = 0, and (5), at s = 1. □

Another lemma which will be used in the proof of Theorem 4 is:

Lemma 18. For two transverse maps gi : Pi →M , i = 1, 2, then:

[Ag1,±] ∗ [g2] = [Ag1∩g2,±] in ΛEg1,±
,

where [g2] is considered as a class of constant loops, and g1 ∩ g2 : P3 →M is
as in Lemma 17.

Proof. The proof is straightforward, and easier than Lemma 17. □

Given a smooth map g : P → M , denote by ζg : R/Z × P → M the class
defined by ζg(θ, x) = ζθ(g(x)). The final result we require concerning action
classes is:

Lemma 19. Given a smooth map g : P →M , it holds that:

∆[Ag,±] = [Aζg,±]

in H(ΛEg,±).

Proof. This is a straightforward calculation: by definition, ∆[Ag,±] is the
class represented by R/Z× P × R/Z →M given by:

(θ, x, t) 7→ ζ±(t−θ)(g(x)).

On the other hand, Aζg,± is given by:

(θ, x, t) 7→ ζ±t+θ(g(x)).
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In the case of − sign, these classes are literally the same. In the case of +
sign, the classes differ by the diffeomorphism R/Z× P 7→ R/Z× P given by
(θ, x) 7→ (−θ, x), and so represent the same class in cobordism. □

2.2.2. Proof of Theorem 4. Let M = (V × R/Z) ∪ (∂V ×D(1)) be an open
book with trivial monodromy as in §1.1.3. There is an obvious circle action
ζ which acts as:

ζt(x, θ) =

{
(x, θ + t), (x, θ) ∈ V × R/Z,
(x, r, θ + t), (x, r, θ) ∈ ∂V ×D(1),

where we use polar coordinates on D(1) factor near the binding.

Theorem 4 will follow from Theorem 12 applied to the action classes associated
to this circle action. In order to apply Theorem 12, we need to show that
the relevant action classes lie in the image of the BV-operator, among other
things.

Abbreviate A± = Aid,± and E± = Eid,±, using the notation in §2.2.1. Then
E± agree with the numbers denoted using the same symbols in the statement
of Theorem 4.

Lemma 20. There exist [B±] ∈ H(ΛE±) such that ∆[B±] = [A±] in H(ΛE±).

Proof. This is obvious in the case in ∂V = ∅ (one can simply appeal to
Lemma 19). The argument is harder when ∂V ̸= ∅.
The class B± is defined as a map D(V )× R/Z →M where here the double
D(V ) is the closed manifold obtained by gluing V to another copy of V , say
V̄ , along the boundary using the identity map.

Then A± is defined onM×R/Z, and ∆(B±) is defined on R/Z×D(V )×R/Z.
There is a cobordism X between R/Z × D(V ) and M , and there is map
C± : Q× R/Z →M which extends A±, B±, and which remains in ΛE± ; see
Figure 1.

In fact, the construction of B± and C± follows from a more general argument
which we present in §2.2.4. For this reason, we omit the details of the present
proof. □

M V ×D

Figure 1. The cobordism between M and R/Z×D(V ) can
be visualized as attaching a generalized handle to M . The
simplest example is when V = [0, 1] where M ≃ S2 and
R/Z×D(V ) ≃ T 2.
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We now prove Theorem 4 using this lemma and the results in §2.2.1.
First of all, part (1) follows easily from Theorem 12, and the fact that:

i(PD(T ∗M)) = [A+] ∗ [A−] = ∆[B+] ∗∆[B−] in H(ΛE++E−),

where we have used Lemma 17 in the first equality, and the fact that
i(PD(T ∗M)) is represented by the constant loops (x, t) ∈ M × R/Z 7→ x.
The second equality follows from the previous lemma. By Theorem 12, this
equation bounds the regular Gromov width from above by E+ + E−, since
f : pt → Ω is dual to the fundamental class PD(T ∗M).

To prove part (2), we use Lemma 18, with g1 = id and g2 the inclusion of a
point pt. We then have:

(6) ∆[B±] ∗ i(T ∗Mpt) = [A±] ∗ [g2] = [Ag2,±] in H(E±),

where we use that i(T ∗Mpt) is represented by a single constant loop based
at pt.

The class Ag2,± is represented by a single loop going around the open book.
Since ∂V ≠ ∅, this single loop can be homotoped to a constant loop in the
binding; moreover, this homotopy can be taken in H(E±).

Since the class of f : M → M is dual to PD(T ∗Mpt), Theorem 12 applied
with equation (6) bounds the parametric Gromov width Gr([M ],Ω) from
above by min{E+, E−}.
To prove part (3), we first appeal to Lemma 19 where the map g : P →M
is the inclusion of a point pt; this shows

∆[Ag,±] = [Aζg,±].

Then we apply Lemma 17 to conclude:

∆[Ag,±] ∗∆[B∓] = ∆[Aζg,±] ∗ [A∓] = [(ζg) ∩ id] in ΛEg,±+E∓ ,

A moment’s thought reveals that the class of constant loops (ζg) ∩ id (based
at points which travel around a single orbit) equals i(β) where β is dual to
the inclusion of V →M . Thus we conclude from Theorem 12 that Gr([V ],Ω)
is bounded by min{Eg,+ + E−, Eg,− + E+}. Since we can take g to be
an arbitrary point, we can make Eg,+ = e+ or Eg,− = e− (the constants
appearing in Theorem 4). This gives the desired result for (3).

To complete the proof of Theorem 4, it remains for us to explain why the
estimates are sharp in some cases.

One example with ∂V ̸= ∅ where both (1) and (2) are sharp is M = S2

with the ellipsoidal metric induced by {x20 + a−2(x21 + x22) = 1} ⊂ R3 for a
sufficiently small; that the bound Gr([S2],Ωa) ≤ 2πa is sharp is the content
of Theorem 2, and further details are given in §2.2.3. That the bound
Gr([pt],Ωa) ≤ 4πa is sharp is proved in [FRV23] for a small enough.

One example with ∂V = ∅ where both (1) and (3) are sharp is M = T 2

with the flat metric obtained by T 2 = R/aZ × RZ with a ≤ 1. That the
Gromov width of the unit codisk bundle Ωa is 4πa is proved in [Bro25]; using
canonical translations, one can transport this ball in a coherent manner to
be based at all the points in V = {0} × R/Z, proving that Gr([V ],Ωa) is
also 4πa, as desired (in general, for the codisk bundle Ω of a flat metric
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on a torus, or, more generally, the codisk bundle of any Lie group with a
bi-invariant metric, it holds that Gr(pt,Ω) = Gr(f,Ω)).

2.2.3. Proof of Theorem 2. As we will show momentarily, the upper bounds
in Theorem 2 follow from Theorem 4. The lower bounds will follow from
explicit constructions.

There are two metrics we will consider on Sn in the proof. Set:

Sn = {(x0, . . . , xn) : x20 + · · ·+ x2n = 1} ⊂ Rn+1.

The first metric ga we consider is the pullback of the Euclidean metric under
the ellipsoid embedding φell : S

n → Rn+1 given by:

φell(x0, . . . , xn−1, xn) = (x0, . . . , axn−1, axn).

The unit codisk bundle of ga is the domain Ωa under consideration.

The second metric is the round metric grounda is the pullback of the Euclidean
metric under the embedding φround : Sn → Rn+1 given by:

φround(x) = ax;

we denote by Ωround
a the associated unit codisk bundle.

Observe that Sn is identified with the open book with page V = Dn−1, via
the parametrization:

V × R/Z ∋ (x, θ) → (x,
√
1− ∥x∥2 cos(2πθ),

√
1− ∥x∥2 sin(2πθ)) ∈ Sn.

Since the domain Ωa is fiberwise symmetric, we have E+ = E−. An easy
computation shows that every loop in L+ has the length at most 2πa as mea-
sured using Ωa; this maximum is achieved for the loop (0, cos(2πθ), sin(2πθ)).
Hence, from Theorem 4 we get

Gr([Sn],Ωa) ≤ 2πa, and Gr([pt],Ωa) ≤ 4πa.

To obtain the equality Gr([Sn],Ωa) = 2πa, we will first show that Ωround
a ⊂ Ωa.

Thus it follows that Gr([Sn],Ωround
a ) ≤ Gr([Sn],Ωa). Then, we will show

that Gr([Sn],Ωround
a ) = 2πa.

It is a general fact that, if there is an inequality between Riemannian metric
g0 ≤ g1, then the unit codisk bundle determined by g1 contains the unit codisk
bundle determined by g0. An easy computation shows that grounda ≤ ga.

Now we argue that Gr([Sn],Ωround
a ) = 2πa. It is known that for the class

of the point we have Gr([pt]; Ωround
a ) = 2πa, i.e., for every ϵ > 0 there

is a symplectic embedding e : B2n(2πa − ϵ) → Ωround
a . We can further

assume that e(0) = (e1, 0), where e1 = (1, 0, ..., 0) ∈ Sn. To estimate
the parametric Gromov width from below, it is enough to find a family
A : Sn → Symp(Ωround

a ) which satisfies A(q)(e1, 0) = (q, 0). Indeed, such a
familly, together with an embedding e induces Ae : S

n → B(2πa− ϵ,Ωa) by

Ae(q) := A(q) ◦ e ∈ B(2πa− ϵ,Ωa).

One way to think about Ωround
a is

Ωround
a

∼= {q + ip ∈ Cn+1 | ∥q∥ = 1, ⟨q, p⟩ = 0, ∥p∥ ≤ a}.
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Each A ∈ U(n + 1) maps Ωround
a to itself, and it is a symplectomorphism.

Hence, it is enough to find a family A : Sn → U(n+ 1) of unitary matrices
such that A(q)(e1, 0) = (q, 0). This is equivalent to finding n families of
vectores zi(q) ∈ Cn+1 such that ⟨q, z1(q), ..., zn(q)⟩ is a unitary basis of Cn+1

for every q ∈ Sn. Such a family of vectors can be found since the complexified
tangent bundle TSn ⊗ C is trivial1. This completes the proof of Theorem 2.

2.2.4. Diagonal actions on open books. If one has an R/Z-action on the page
V , we have the induced diagonal R/Z action on the open book M . The
action class we used in §2.2.2 is obtained from the trivial action on V .

The goal in this section is to prove that the action classes A± :M×R/Z →M
lie in the image of the BV operator ∆, in H(Λc) for specific c. To this end,
it is useful to give a description of the open book M as a subset of V × C.
Let (V, ∂V ) be a smooth manifold with boundary, and let f : V → [0, 1] be
a smooth function such that f(1) = ∂V is a regular level set. Define:

OB(V ) = {(v, z) ∈ V × C : f(v) + |z|2 = 1}.
The bordism classes we consider are related to a circle action of the following
form: suppose that (t, v) 7→ ζt(v) is a circle action on V which preserves the
level sets of f , and consider the resulting circle action:

(t, v, z) 7→ (ζt(v), e
2πitz)

which acts on OB(V ).

First, we deform the construction of OB(V ) as follows. Define:

M = {(v, z) ∈ V × C : f(v) + ρ(|z|)2 = 1},
where ρ is non-decreasing, ρ(x) = 0 for x ≤ 1, ρ(x) = 2 for x ≥ 2, and
ρ′(x) > 0 whenever ρ(x) ∈ (0, 1]. Then:

Lemma 21. The identity map id : OB(V ) → OB(V ) is cobordant to the
smooth map R :M → OB(V ) given by:

R(v, z) = (v, g(z)z) where g(z) = |z|−1ρ(|z|).
which is well-defined; i.e., f(v) + |g(z)z|2 = 1.

Proof. We define the cobordism explicitly:

Q = {(v, z, s) ∈ V × C× [0, 1] : ((1− s)|z|+ sρ(|z|))2 + f(v) = 1}.
A short computation shows that Q is cut transversally. Moreover, the
boundary ∂Q = {s = 0, 1} is identified with OB(V ) ⊔M in the obvious way.
Define a map:

S : Q→ OB(V )

by the formula:

S(v, z, s) = (v, gs(z)z) where gs(z) = (1− s) + s|z|−1ρ(|z|),
which is a smooth function. This provides the desired cobordism, since
S(v, z, 0) is identified with the identity map and S(v, z, 1) with R(v, z). □

1This is a well-known fact, a fairly simple way to see this is from the existence of a
Lagrangian immersion Sn = {(x, y) ∈ Rn × R | ∥x∥2 + y2 = 1} 7→ (1 + iy)x ∈ Cn (see
[MS17, Example 13.2.4]).
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Next, we consider the action class:

A : R/Z×OB(V ) → OB(V ) given by (t, v, z) 7→ (ζt(v), e
2πitz).

Our goal is prove that [A] lies in the image of ∆.

It follows easily from Lemma 21 that A is cobordant to the class:

B : R/Z×M → OB(V ) given by (t, v, z) 7→ (ζt(v), e
2πitg(z)z),

indeed, one can re-use the same cobordism Q, and A,B extend to the
cobordism.

Remark. During the cobordism, the lengths of loops never exceeds the
maximum length of loops in the class of A; indeed, each loop appearing is
exactly one of the loops appearing in the family A.

Thus, in order to prove that [A] lies in the image of ∆, it is sufficient to
prove that [B] lies in the image of ∆.

The next step is to pick a smooth non-increasing cut-off function ψ : R → [0, 2]
such that ψ(x) = 2 for x ≤ 0, ψ(x) = 0 for x ≥ 1, and ψ′(x) ̸= 0 if
ψ(x) ∈ (0, 1]. Then we define:

N = {(v, z) ∈ V × C : f(v) + ψ(|z|)2 + ρ(|z|)2 = 1}.
It is important to note that ψ(|z|) and ρ(|z|) are supported in different
regions (the former in |z| ≤ 1 and the latter in |z| ≥ 1). A quick computation
shows that N is cut transversally.

Lemma 22. The map B : R/Z×M → OB(V ) is cobordant to the map:

Cϑ : R/Z×N → OB(V )

given by:

Cϑ(t, v, z) =

{
(ζt(v), e

2πiϑψ(|z|)) if |z| ≤ 1,

(ζt(v), e
2πitg(|z|)z) if |z| ≥ 1,

where g(|z|) = |z|−1ρ(|z|).

Proof. It is clear from the construction that the map is smooth and agrees on
the overlap (since ψ(x) and ρ(x) vanish to all orders when x = 1). Moreover,
the map is well-defined and valued in OB(V ), as can be checked by a direct
computation. It remains to prove the map is cobordant to B.

To see this, we define the cobordism explicitly:

X = {(v, z, s) ∈ V × C× [0, 1] : f(v) + s2ψ(|z|)2 + ρ(|z|)2 = 1}.
It is not hard to see that this is cut transversally; when s = 0, it is already
known to be transverse, and when s ≠ 0, the derivative with respect to s
is non-zero where ψ(|z|) ̸= 0; elsewhere it is known to be transverse by the
same argument used to prove M was cut transversally.

Now we we define the map Tϑ : R/Z×X → OB(V ) by the formula:

Tϑ(t, v, z, s) =

{
(ζt(v), e

2πiϑsψ(|z|)) if |z| ≤ 1,

(ζt(v), e
2πitg(|z|)z) if |z| ≥ 1,

where g(|z|) = |z|−1ρ(|z|). This map is easily seen to be a cobordism between
B and Cϑ, as desired. □
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Remark. Unlike the cobordism between A and B, the cobordism between B
and Cϑ introduces new loops; namely, it introduces the loops

(7) t 7→ (ζt(v), e
2πiϑr) where f(v) = 1− r2

Thus, if c is greater than the maximum length of loops which appear in the
class A, and in the family (7) (for any chosen ϑ), then the cobordism from A
to Cϑ occurs within H(Λc). However, if the action on the page V is trivial,
these loops are constant and therefore do not increase the length threshold;
this observation is relevant to obtaining the stated bound in Lemma 20.

Our final result in this subsection is that [Cϑ] = ∆([Dϑ]) for a family of loops
Dϑ. To show this, define:

P = {(v, r) ∈ V × (0,∞) : f(v) + ψ(r)2 + ρ(r)2 = 1} ⊂ N ;

essentially since ψ(0) = 2 is larger than 1, it is easy to see that P is a closed
manifold. Then we define: Dϑ : R/Z× P → OB(V ) by:

Dϑ(t, v, r) =

{
(ζt(v), e

2πiϑsψ(r)) if |z| ≤ 1,

(ζt(v), e
2πitg(r)r) if |z| ≥ 1.

Lemma 23. It holds that ∆([Dϑ]) = [Cϑ] within H(Λc) provided Cϑ ∈ Z(Λc).

Proof. Observe that ∆(Dϑ) is represented by D′
ϑ : R/Z×R/Z×P → OB(V )

given by:

D′(t, θ, v, r) =

{
(ζt−θ(v), e

2πiϑsψ(r)) if |z| ≤ 1,

(ζt−θ(v), e
2πi(t−θ)g(r)r) if |z| ≥ 1.

Now consider the diffeomorphism h : R/Z× P → N given by:

h(θ, v, r) = (ζ−θ(v), e
−2πiθr).

Under this diffeomorphism we have:

Cϑ(t, h(θ, v, r)) =

{
(ζt−θ(v), e

2πiϑψ(r)) if |z| ≤ 1,

(ζt−θ(v), e
2πi(t−θ)g(r)r) if |z| ≥ 1,

so [Cϑ] = [D′
ϑ] = ∆([Dϑ]). Note that two maps R/Z×Pi → OB(V ), i = 0, 1,

differing by a diffeomorphism P0 → P1 are cobordant in a trivial sense; Such
a cobordism does not change any lengths of loops, so the cobordism from Cϑ

to ∆(Dϑ) occurs within H(Λc). □

2.2.5. Proof of Theorem 3. We begin with an auxiliary lemma about the
Hopf flow. Consider the Hopf R/Z-action on S3 ⊂ C2 given by:

ζt(z1, z2) = (e2πitz1, e
2πitz2).

Then:

Lemma 24. The Hopf action is homotopic to the trivial R/Z-action through
the loops of length ≤ 2π.
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Proof. After conjugating the Hopf action with ψ(z1, z2) = (z1, z̄2) we get:

t · (z1, z2) = (e2πitz1, e
−2πitz2).

This R/Z-action is the restriction of the SU(2) ∼= S3 action to the unit circle
{(z, 0) : z ∈ S1} ⊂ S3. Consider a homotopy h : R/Z× [0, 1] → S3 through
loops of length ≤ 2π such that h(t, 0) = (e2πit, 0), h(t, 1) = (1, 0). The
homotopy h induces a homotopy:

H(z1, z2, t, s) = h(t, s) · (z1, z2),
which satisfies the conclusion of the Lemma. □

Similarly to §2.2.3 one gets that the radius a codisk bundle Ωround
a of the

round metric is a subset of Ωa, where Ωa is the unit codisk bundle determined
by the embedding of:

{x20 + x21 + · · ·+ a−2(x2n−3 + x2n−2 + x2n−1 + x2n) = 1} ⊂ Rn+1.

Since Gr([Sn]; Ωround
a ) = 2πa we get:

Gr([pt]; Ωa) ≥ Gr([Sn]; Ωa) ≥ 2πa.

To prove the upper bound, one appeals to the results of §2.2.4 with the
diagonal R/Z-action given by:

(8) ζt(x0, ...., xn−4, z1, z2) = (x0, ..., xn−4, e
2πitz1, e

2πitz2).

One sees Sn as an open book with page V ⊂ Dn−3 × C given by:

V = {x20 + · · ·+ x2n−4 + a−2|z1|2 ≤ 1}.
Then we have:

Sn = OB(V ) = {(x, z1, z2) ∈ V × C | f(x, z1) + a−2|z2|2 = 1},
where f(x, z) = x20 + · · · + x2n−4 + a−2|z|2. An R/Z action on V is given
by the rotation of the C coordinate, and it preserves the levels of f , hence
from Lemma 23, the induced action class A is in the image of ∆; in brief,
there exists a class B such that [A] = ∆[B] ∈ H(Λ2πa). The stated length
threshold of 2πa is obtained by inspection of the length thresholds in 2.2.4.

Finally, the contractibility of the Hopf flow on S3 implies that the R/Z-action
(8) is homotopic to the trivial R/Z action, hence [A] = [Sn] ∈ H(Λ2πa).
Then Theorem 12 applied to the class β = [T ∗Sn], α1 = [B] (and α2 = [Sn])
produces Gr([pt]; Ωa) ≤ 2πa, as desired.

2.2.6. Proof of Theorem 5 and Proposition 1. The proof of Theorem 5 follows
very similar lines to the proofs of Theorem 4 in the case when ∂V = ∅. Indeed,
one can define Bd

− : V × T d−1 × R/Z → V × T d by:

B−(v, x, t) = (v, x1, . . . , xd−1,−t),
and, for k < d, define Bk

+ : V × T d−k−1 × R/Z → V × T d by

Bk
−(x, t) = (v, 0, . . . , 0, x1, . . . , xd−k−1, t).

By Lemma 17 and 19, it holds that:

∆[Bd
−] ∗∆[Bk

+] = [V × T d−k] in ΛE−+Ek
+

where [V × T d−k] is the class of (v, x) 7→ (v, 0, . . . , 0, x1, . . . , xd−k).
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Since [V ×T d−k] has non-zero homological intersection number with the class
[T k] represented by the map f : T k → V × T d given by x 7→ (v0, x1, . . . , xk),
we conclude from Theorem 12 that Gr([T k],Ω) ≤ E− + Ek

+, as desired.

In the remainder of this subsection, we will explain how Theorem 5 can be
used to recover the camel theorem (Proposition 1).

Recall the set-up of Proposition 1; we had defined the symplectic manifold:

X = (W \ {x1 = 0}) ∪ {x2n + y2n ≤ π−1ϵ},
where W = R/Z×R2n−1, for n > 1, and claimed that Gr(f,X) ≤ ϵ provided
that f : R/Z → X has non-trivial winding number.

We argue by contradiction: suppose there is a family of balls:

F : R/Z×B(a) → X

with a > ϵ, such that t 7→ F (t, 0) = (t, 0, . . . , 0) (here we appeal to the fact
that the winding number classifies the free homotopy class of a loop). It is
convenient to fix some small parameter δ > 0. We begin with an auxiliary
lemma, which converts X into a space more compatible with Theorem 5.

Lemma 25. There exists a symplectic isotopy ψs : X →W so that, abbrevi-
ating yi = yi ◦ ψ1 ◦ F (t, z) and xi = xi ◦ ψ1 ◦ F (t, z), we have:

(1) ψ1 ◦ F (t, 0) = (t, 0, . . . , 0),
(2) xi ∈ (−1/2, 1/2) for i = 2, 3, . . . , n,
(3) yn > −ϵ/2− 2δ,
(4) x1 = 0 =⇒ yn < ϵ/2 + δ.

Proof. Condition (1) is already satisfied. Condition (2) is easily satisfied
using the transformation (xi, yi) 7→ (a−1xi, ayi) where a > max 2|xi|, for
each i = 2, . . . , n, where the maximum is taken over the image of the family
of balls. Let us denote ρa the result of this transformation. It is convenient
to also take πa2 > 4ϵ.

Now we focus on attaining (4). The transformation used to achieve (2)
implies that:

x1 ◦ ρa(F (t, z)) = 0 =⇒ ρa(F (t, z)) ⊂ {a2x2n + a−2y2n ≤ π−1ϵ} = R.

Since the projection Rn of R to xn, yn-plane is an ellipse of area ϵ and is
contained in S = {xn ∈ (−1/2, 1/2)} ⊂ R2, one can find a symplectic isotopy
φs of the strip S so φ1 sends Rn into the rectangle:

(−1/2, 1/2)× (−ϵ/2− δ, ϵ/2 + δ),

since the rectangle has strictly larger area than the ellipse. One can arrange
that φ1(0) = 0. The isotopy φs extends as a product isotopy id× φs to all
of W . Then φ1 ◦ ρa ◦ F satisfies (1), (2), (4). It remains only to ensure (3)
holds.

For this step, we consider the isotopy generated by H = f(x1)xn, where
f(0) = 0 and f ′(0) = 0, and f(x1) = 1 outside a small neighborhood U of
x1 = 0. The Hamiltonian vector field generated by this function is:

f(x1)∂yn + f ′(x1)xn∂y1
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This vector field equals ∂yn outside of U , and equals 0 when x1 = 0. We pick
the neighborhood U small enough that:

φ1 ◦ ρa ◦ x1 ∈ U =⇒ φ1 ◦ ρa ◦ yn ≥ −ϵ/2− 2δ,

which can be achieved by a simple compactness argument, since we already
know (4) holds.

The flow by XH increases the yn coordinates when x1 ̸∈ U ; thus flowing long
enough will therefore satisfy condition (3) everywhere. Denoting by η1 the
long time-flow by XH , we set ψ1 = η1 ◦ φ1 ◦ ρa to complete the proof. □

Henceforth replace F by ψ1 ◦ F .

Proof of Proposition 1. Introduce the domain Ω ⊂ T ∗Tn determined by the
conditions:

(a) pn ≥ −ϵ/2− δ,
(b) q1 = 0 =⇒ pn ≤ ϵ/2 + 2δ,

using canonical coordinates (p1, q1, . . . , pn, qn). Define the map:

(x1, y1, . . . , xn, yn) 7→ T ∗TN by xi = qi and yi = −pi.
The family of balls F projects to a family F : R/Z× B(a) → T ∗Tn which
restricts to embeddings z 7→ F (t, z), since we have arranged that F is valued
in the region xi ∈ (−1/2, 1/2) for i = 2, . . . , n. Moreover, by construction, F
is actually a family of balls in Ω. Thus the existence of F implies Gr(f,Ω) ≥ a,
where q ◦ f(t) = (t, 0, . . . , 0).

On the other hand, Theorem 5 with k = 1 and d = n yields:

Gr(f,Ω) ≤ ϵ+ 3δ,

as can be seen by approximating the domain Ω satisfying (a) and (b) from
within by smooth fiberwise starshaped domains. Thus we conclude a ≤ ϵ+3δ.
Since δ could be taken arbitrarily small, we have a ≤ ϵ, as desired. □

2.2.7. Proof of Theorem 6. The proof is straightforward application of Theo-
rem 12 using a simple string topology computation: if q is a loop such that
q∗TΣ is non-orientable, then ∆(q) ∗∆(q̄) = pt in H(ΛE), where pt denotes
the class represented by a single constant loop. Since pt = i(T ∗Mpt), and
T ∗Mpt has non-zero homological intersection number with the zero section,
the desired result Gr([Σ],Ω) ≤ E follows. □

3. The Floer cohomology persistence module

In this section we explain the aspects of our paper pertaining to the Floer
cohomology persistence module, with the goal of proving Theorem 7.

3.1. Hamiltonian functions and isotopies.
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3.1.1. Class of Hamiltonian functions. As in §1, throughout we fix a Liouville
domain Ω̄, and denote by W its completion. The structure of W as a
completion yields a distinguished “convex end” which is symplectomorphic
to the positive half of the symplectization of ∂Ω with the contact structure
ker(λ|∂Ω). This yields a function r which is one-homogeneous with respect
to the Liouville flow in the convex end, and which satisfies ∂Ω = {r = 1}.
It is well-known that the Hamiltonian vector field Xr is equivariant with
respect to the Liouville flow, and restricts to ∂Ω as the Reeb vector field for
the contact form λ|∂Ω.
Let us introduce the notation Ω(r0) = {r < r0}, so Ω = Ω(1).

As in §1.2, this distinguishes a class of Hamiltonian functions: define H to
be those smooth functions H :W → R such that H = ar holds when r ≥ r0,
for some r0 (which depends on H).

3.1.2. Smooth families of Hamiltonians. One says that a family Hτ ∈ H,
where τ is valued in a smooth manifold T (potentially with boundary and
corners) is smooth provided:

(1) the map (τ, w) ∈ T ×W 7→ Hτ (w) is smooth,
(2) Hτ (w) = cτr for r ≥ r0, for some r0 which depends continuously on

τ , and where the slope cτ varies smoothly with τ .

3.2. Hamiltonian connections on surfaces. The Floer theory PDEs used in
this text are based on the notion of a Hamiltonian connection as described
in [MS12, §8]; see also [AAC23, §2.2.3] which works in a similar context to
the present paper.

3.2.1. Domains. Let us agree that a domain is a compact smooth surface Σ
with boundary ∂Σ and the data of:

(1) a complex structure j, namely a smooth section of End(TΣ) whose
square is −1, and,

(2) two collections Γ± of j-holomorphic embeddings of a closed disk
D(1) → Σ whose images are mutually disjoint, and are also disjoint
from ∂Σ.

A smooth family of domains, parametrized by σ ∈ S, is simply the parametric
version of (1) and (2); more prosaically, this means that one considers the
product S × Σ, with projection π onto Σ, and picks:

(1′) a smooth section j of End(π∗TΣ) whose square is −1, and
(2′) two collections Γ± of smooth embeddings S ×D(1) → S × Σ which

sends {σ}×D(1) into {σ}×Σ and which satisfies (2) when restricted
to the disk {σ} ×D(1), for the appropriate complex structure.

A prototypical example of such a family is given by Σ = CP1, and S the
product of k-copies of TCP1 with an appropriate closed set removed. To each
collection of k non-zero tangent vectors, there exist k uniquely determined
biholomorphisms of CP1 which send (0, 1) ∈ TCP1 to the chosen tangent
vectors. These biholomorphisms take D(1) ⊂ CP1 onto k biholomorphically
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embedded disks. There is a closed subset of S for which these k disks
intersect; after removing this closed subset, one has a smooth family.

3.2.2. Remark on notation and terminology. If either j or Γ± is not germane
to the discussion, we will suppress it from the notation, and simply refer to
S × Σ as a family of domains.

It is also convenient to sometimes refer to Γ± as punctures, in which case we
forget the holomorphic embedding and consider only the evaluation at the
center of the disk. This produces a submanifold Γ± ⊂ S × Σ of codimension
2 which is a disjoint union of sections of S × Σ → S; we call a connected
component ζ ⊂ Γ± a puncture.

Frequently it is expedient to define Σ as the already punctured surface:
Σ = R × R/Z, Σ = C, or Σ = C \ {z1, z2}. In these cases, we should
understand the underlying closed surface to be the Riemann sphere CP 1.

At other times, we will refer to Γ± as cylindrical ends, in which case we
precompose the holomorphic embedding of the disk D(1) → Σ with the

conformal reparametrization (s, t) 7→ e∓2π(s+it). Note that the ends in Γ+

are modelled on [0,∞)×R/Z while those in Γ− are modelled on (−∞, 0]×R/Z.
We will sometimes appeal to cylindrical coordinates near a puncture ζ ⊂ Γ±,
and this is to be understood in the context of this remark.

3.2.3. Connection 1-forms. Let (S × Σ,Γ±) be a smooth family of domains.
A connection 1-form is a singular 1-form a on S × Σ×W such that:

(1) above a compact coordinate chart (σ, z = x+ iy) on S × Σ disjoint
from the punctures, a = Hσ,x,ydx+Kσ,x,ydy, where H,K are smooth
families in H;

(2) for each puncture ζ ⊂ Γ±, one has a = Hζ,tdt near ζ, where Hζ,t is
a smooth family in H on R/Z; this uses the appropriate cylindrical
coordinates near ζ. Moreover, the Hamiltonian isotopy generated by
Hζ,t has non-degenerate 1-periodic orbits.

One should think that a has prescribed singularities near the punctures,
with a requirement on the dynamics of the induced asymptotic Hamiltonian
system. Note that, because the asymptotic Hamiltonian system commutes
with the Liouville flow outside of a compact set, the requirement that the
orbits are non-degenerate forces all of the orbits to remain in a compact set,
and hence there are only finitely many orbits.

Remark. One slightly subtle requirement which plays a role in our proof of
the maximum principle, Proposition 28, is the following: the connection one
form should appear in the form a = Hζ,tdt, where Hζ,t is non-degenerate, on
cylindrical ends, and on some number of finite length cylinders, such that
the domain obtained by removing the cylindrical ends and the finite length
cylinders is contained in a fixed compact subset of Σ. This is because our
maximum principle is based on confining Floer cylinders, and then bounding
the distance of other points to a region where a = Hζ,tdt. This set-up is
relevant when, for instance, gluing together two continuation cylinders.



PARAMETRIC GROMOV WIDTH OF LIOUVILLE DOMAINS 25

3.2.4. Perturbation 1-forms. Connection 1-forms are used to define a certain
PDE. It is well-understood that Floer theory relies on the moduli spaces
of solutions to this PDE being transversally cut out. We introduce in this
section a perturbation term p to obtain the requisite transversality.

Given a smooth family of domains (S × Σ,Γ±), a perturbation 1-form is a
smooth 1-form p on S × Σ×W such that:

(1) above a compact coordinate chart (σ, z = x+ iy) on S × Σ disjoint
from the punctures, p = hσ,x,ydx+ kσ,x,ydy, where h, k are smooth
and uniformly bounded in C1 families of functions W → R, and,

(2) p vanishes above a neighborhood of the punctures Γ±.

The boundedness of the functions appearing in p is used in an essential way
when establishing a priori estimates on the energy integrals in §3.3.5; see the
comment at the end of §3.3.7.

3.2.5. Families of connection and perturbation 1-forms. Let S × Σ be a
smooth family of domains. One can pull this back to T × S × Σ for any
manifold T to obtain a new family of domains. A connection or perturbation
1-form on T × S ×Σ×W is, by definition, a smooth family of connection or
perturbation 1-forms on S × Σ×W parametrized by T .

In this sense, we may speak of homotopies of 1-forms by setting T = [0, 1].

3.2.6. Connection associated to a 1-form. Let a, p be connection and pertur-
bation 1-forms on S × Σ×W . Define:

H = TW⊥Ω where Ω = pr∗Wω − da− dp.

Then H is an Ehresmann connection on S × Σ×W → S × Σ.

The coordinate distribution TS is contained in H. On the other hand, the
horizontal lifts of ∂x, ∂y ⊂ TΣ are given by:

∂Hx = ∂x +XH+h and ∂Hy = ∂y +XK+k,

where a+ p = (H + h)dx+ (K + k)dy.

The pullback of H to {σ} × Σ×W → {σ} × Σ will be denoted by Hσ in the
sequel, and should be considered as a family of connections on Σ×W → Σ.

3.3. A general form of Floer’s equation. In this section, we will explain a
general form of Floer’s equation which will specialize to the various cases
used in the proofs of our main results.

3.3.1. Almost complex structures. Let S × Σ be a family of domains, with
punctures Γ±. An almost complex structure on S × Σ×W is a section J of
the pullback bundle pr∗WEnd(TW ) → S × Σ×W satisfying J2 = −1.

It is convenient to think of this as a family Jσ,z of almost complex structures
on W parametrized by (σ, z) ∈ S × Σ. We require that:

(1) For (σ, z) near a puncture ζ ⊂ Γ±, we have Jσ,z = Jζ for an almost
complex structure Jζ on W .

(2) J is ω-tame, i.e., ω(v, Jv) is a positive quadratic form for v ∈ TW .
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(3) Each Jσ,z is invariant under the Liouville flow outside of Ω ⊂W .

3.3.2. Lagrangian boundary conditions. Suppose that the surface Σ has
boundary ∂Σ. For the purposes of this text, a Lagrangian boundary condition
is a smoothly varying family of Lagrangian submanifolds Lσ,z ⊂ W where
(σ, z) ∈ S × ∂Σ. Here “smoothly varying” means that:

L = {(σ, z, p) : p ∈ Lσ,z} ⊂ S × ∂Σ×W

should be a smooth submanifold. A submanifold is required to be properly
embedded and without boundary. We require two additional properties:

(1) Lσ,z is weakly exact, i.e., ω vanishes on disks with boundary on Lσ,z.
(2) outside of Ω, the Liouville vector field is tangent to Lσ,z.

In this text, Lagrangian boundary conditions will only be used in the com-
parison between string topology of M and Floer cohomology of T ∗M , and
we will have that Lσ,z = T ∗Mq(σ,z) where q(σ, z) depends smoothly on σ, z.

3.3.3. Floer’s equation for a Hamiltonian connection. The data required to
formulate Floer’s equation is:

(1) a family of domains (S × Σ,Γ±, j) as in §3.2.1,
(2) a connection 1-form a and perturbation 1-form p on S × Σ×W as

in §3.2.3 and §3.2.4,
(3) an almost complex structure J on S × Σ×W as in §3.3.1,
(4) a Lagrangian boundary condition L for S × Σ×W as in §3.3.2.

The data of (2) produces an Ehresmann connection H for the fiber bundle
S×Σ×W → S×Σ. For each σ ∈ S, we consider the Ehresmann connection
Hσ obtained by pullback to {σ} × Σ×W → {σ} × Σ. Then Hσ is identified
with TΣ via the projection map, and we use (1) and (3) to define:

J̃σ,z,w =

[
Jσ,z,w 0
0 jσ,z

]
on TWw ⊕ (Hσ)z,w = T (Σ×W )z,w.

This is considered as a family of almost complex structures on Σ×W .

A pair (σ, u) solves Floer’s equation for this data if:
u : Σ →W is a smooth map,

the section z 7→ (z, u(z)) is (jσ, J̃σ)-holomorphic,

u(z) ∈ Lσ,z for all z ∈ ∂Σ.

In the sequel, we will say that such (σ, u) solves §3.3.3.

3.3.4. Regularity. We assume the reader is familiar with the standard elliptic
regularity results, in particular, the following fact: if (σn, un) is a sequence
of solutions to §3.3.3 and:

(1) σn converges to σ∞ ∈ S,
(2) the image un(Σ) remains in a compact set,
(3) the first derivatives of un : Σ →W are bounded on compact subsets,
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then a subsequence of un converges in the C∞
loc-topology to a smooth map

u∞ such that (σ∞, u∞) solves §3.3.3.
This result is true because of the general theory of pseudo-holomorphic curves
in Σ×W , and because the submanifold Lσ ⊂ Σ×W in §3.3.2 is totally real.
We refer the reader to [MS12, §B] for further details.
To establish (2) and (3) we rely on a priori estimates on the energy integral.

3.3.5. Energy integral. Let u : Σ → W be a smooth map, and let H be an
Ehresmann connection on Σ×W . Consider the 2-form on Σ defined by:

ω(ΠHdv(−),ΠHdv(−)),

where v(z) = (z, u(z)) and ΠH : T (Σ×W ) → TW is the projection whose
kernel is H. The integral of this 2-form is called the energy of the map u
relative the connection H.

If (σ, u) solves §3.3.3, and H = Hσ, then the above 2-form is non-negative,
since J is assumed to be ω-tame. We say that (σ, u) has finite energy provided
the energy of u relative Hσ is finite. The moduli space of all finite energy
solutions of 3.3.3 plays a central role in this text, and might be denoted:

M(S × Σ×W,Γ±, j, a, p, J, L);

however, we will typically suppress arguments from the notation and simply
use the symbol M as the required data can be inferred from the context.

The finite energy condition implies the following results:

Proposition 26 (Asymptotic convergence). If (σ, u) solves §3.3.3 and has
finite energy, then, in cylindrical coordinates z = s+ it near the puncture ζ,
u is asymptotic to a solution of the s-independent equation:

∂su+ Jζ(u)(∂tu−Xζ,t(u)) = 0,

where Jσ,z = Jζ and a = Hζ,tdt near ζ. Moreover, this asymptotic solution
satisfies ∂su = 0, and is thus tracing out an orbit of the vector field Xζ,t.

Proof. See, e.g., [Sal97]. □

Proposition 27 (Gradient bound). If (σn, un) is a sequence of solutions
of §3.3.3, with uniformly bounded energy, and σn converges, then un has
bounded first derivatives with respect to a Riemannian metric g on W which
is invariant under the Liouville flow in the end, and a metric on Σ which is
cylindrical near the punctures.

Proof. Because W is symplectically aspherical, and the Lagrangians appear-
ing as boundary conditions are weakly exact, the stated result follows from
standard bubbling analysis. The argument is simplified by the fact that the
almost complex structures J are invariant under the Liouville flow in the
end. For details, we refer the reader to, e.g., [BC24, AAC23]. □

Proposition 28 (Maximum principle). If (σn, un) is a sequence of solutions of
§3.3.3 with uniformly bounded energy, and σn converges, then un(Σ) remains
in a compact subset of W .
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Proof. This is proved in [BC24] by a soft argument (using the Liouville-
invariance of J and the Hamiltonian systems in 3.1); see also [AAC23]. We
note that the proof does use the assumption in §3.2.3 that the Hamiltonian
isotopy generated by the asymptotic system Hζ,t has no 1-periodic orbits
outside of a compact set. □

3.3.6. Compactness and Floer differential cylinders. By combining Proposi-
tions 27 and 28 with the regularity result in §3.3.4, one sees that, in order to
conclude that a sequence (σn, un) of solutions to §3.3.3 has a convergent sub-
sequence in C∞

loc, it suffices to ensure that σn has a convergent subsequence
and that un has uniformly bounded energy. Thus the main consideration for
ensuring compactness is a priori energy estimates.

Even if (σn, un) has a subsequence such that un → u∞ in C∞
loc, it is not true

in general that un will converge uniformly to u∞; it is possible that solutions
of the s-independent equation from Proposition 26 break-off at the punctures.
This phenomenon is a cornerstone of Floer theory, and we will not explain it
any further except via the illustration in Figure 2.

u∞v1

v2

Figure 2. Compactness up-to-breaking of Floer differential
cylinders at the punctures; a sequence of solutions un defined
on the pair-of-pants surface converging on compact subsets
to a limit u∞, with the breaking of two solutions v0, v1 of the
s-independent equation at the punctures.

Because of the breaking phenomenon, the s-independent equation in Proposi-
tion 26 plays a central role in Floer theory; we refer to this equation as Floer’s
differential equation, and it depends on the choice of an almost complex
structure Jζ and a time-dependent Hamiltonian vector field Xη,t generated
by a smooth family Ht ∈ H satisfying Ht+1 = Ht.

3.3.7. A priori energy estimates. Consider a connection one-form a and
perturbation one-form p on S×Σ×W . This induces an Ehresmann connection
H on S × Σ × W → S × Σ. It is well-understood that the curvature of
the connection H plays a role in a priori energy estimates for the energy
integral for solutions to §3.3.3; see, e.g., [AAC23, §2.3.3]. In fact, there is
an identity for the energy integral involving the two-form r on S × Σ×W
called the curvature potential characterized by the property that, above a
local coordinate patch z = x+ iy on Σ where:

a = Hσ,x,ydx+Kσ,x,ydy and p = hσ,x,ydx+ kσ,x,ydy

we have:

r = (∂x(Kσ,x,y + kσ,x,y)− ∂y(Hσ,x,y + hσ,x,y) + ω(XH+h
σ,s,t , X

K+k
σ,x,y ))dx ∧ dy,

where XH+h
σ,x,y , X

k+k
σ,x,y are the domain dependent Hamiltonian vector fields

tangent to the fibers of S × Σ×W → S × Σ.
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We note that if p = 0 and a = Htdt then r = 0, and so the curvature potential
r vanishes above a neighbourhood of the punctures Γ ⊂ S × Σ.

It is convenient to phrase the energy identity in terms of the amount of
energy a solution has on a compact subdomain Σ′ ⊂ Σ. A priori energy
estimates for the full energy are then obtained by taking a limit over larger
and larger subdomains. The energy identity we will use is:

Lemma 29. If (σ, u) solves §3.3.3 and Σ′ ⊂ Σ is a compact subdomain with
boundary containing the support of pσ, then the energy of u|Σ′ is equal to:

E(u|Σ′) =

∫
Σ′
u∗ω + v∗rσ −

∫
∂Σ′

v∗aσ,

where aσ, pσ, rσ denote the pullbacks to {σ} × Σ×W and v(z) = (z, u(z)) is
considered as a section of Σ×W → Σ.

Proof. This is a standard computation; see, e.g., [AAC23, Lemma 2.3]. □

Let us say that the data a, p has curvature bounded from above provided:

sup{
∫
Σ
v∗r : v is a smooth section Σ → {σ} × Σ×W for some σ} <∞,

where r is the curvature potential associated to a, p. We denote the quantity
on the left by const(r). This leads to the following a priori energy estimate:

Lemma 30. If a, p has curvature bounded from above, then any finite energy
solution (σ, u) of §3.3.3 satisfies:

E(u) ≤ ω(u) +

∫ 1

0

∑
Γ−

Hζ,t(γζ(t))−
∑
Γ+

Hζ,t(γζ(t))dt−
∫
∂Σ
v∗aσ + const(r),

where u is asymptotic to the orbit γζ(t) at the puncture ζ, and a = Hζ,tdt
holds near the puncture ζ. In particular, the energy of finite energy solutions
is uniformly bounded provided:

(1) the symplectic area ω(u) is bounded above for solutions (σ, u),
(2) the 1-periodic orbits of Hζ,t are contained in a compact set,
(3) the integrals of aσ over sections v : ∂Σ →W valued in the Lagrangian

boundary conditions Lσ are bounded below as σ varies in S.

Proof. This follows from the energy identity; see [AAC23, Lemma 2.4]. □

We briefly explain why these three conditions can be assumed to hold in the
context of our paper. First note (2) holds by fiat; it is part of our assumptions
from §3.2.3 on the connection one-form. Second, in all of the constructions
involving a non-empty boundary ∂Σ, we ensure that a appears in the form
Hσ,tdt where t is a coordinate on the boundary, Hσ,t is non-negative outside
of a compact set, and moreover that minHσ,t is uniformly bounded from
below as σ varies in S. It then follows easily that the integrals of v∗aσ will
be bounded from below, i.e., (3) will be satisfied.

Morally speaking, condition (1) holds because we assume the symplectic
form is exact. There is some subtlety when ∂Σ ̸= ∅, and we will explain how
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to deal with this in §4, when we first consider moduli spaces with boundary
conditions.

Remark. In general, condition (1) cannot be established, and the usual way
one deals with this is via the introduction of Novikov coefficients in the Floer
cohomology groups.

To conclude this subsection, we make the following observation:

Lemma 31. If (a, 0) has curvature bounded above (i.e., p = 0), then so does
the perturbed data (a, p).

Proof. This is due to the fact that the functions appearing in p are assumed
to be uniformly bounded in C1; see [AAC23, Lemma 2.2]. □

3.3.8. Transversality. Each finite-energy solution (σ, u) determines a lin-
earized operator:

Dσ,u : TSσ ⊕W 1,p(u∗TW ) → Lp(Hom0,1(TΣ, u∗TW )),

where Hom0,1 is the bundle of (jσ, Jσ)-antilinear homomorphisms. We always
assume p > 2 when discussing the Sobolev space W 1,p.

The details of the construction of the linearized operator are well-known; see,
e.g., [Sal97, Can22]. Let us comment that it is obtained by differentiating
the local coordinate representations of the non-linear PDE with respect to
local deformations of u (and σ); this yields a linear differential operator
acting on the local deformations; these can be patched together to obtain
the global linearized operator.

Restricting Dσ,u to variations fixing σ yields a particular type of differential
operator, namely, a Cauchy-Riemann operator with asymptotic conditions.
Because we required that the asymptotic Hamiltonian systems are non-
degenerate in §3.2.3, the linearized operator is Fredholm operator. If the
cokernel of Dσ,u is zero for each solution (σ, u), then we say that transversality
holds. In this case, the space of solutions has the structure of a smooth
manifold, and its dimension is equal to the dimension of the kernel of Dσ,u.
This dimension can be computed by a general formula for the Fredholm
index of a Cauchy-Riemann operator with asymptotic conditions. This is all
a quite standard part of Floer theory.

We will appeal to the following general transversality lemma:

Lemma 32. Given a family of domains, almost complex structures, La-
grangian boundary conditions, and the connection one-form a on S ×Σ×W ,
transversality can be achieved for all solutions (σ, u) to the perturbed equation
§3.3.3 by choosing p to be a generic perturbation one-form.

Proof. This is a standard application of the usual Sard-Smale argument; see
[AAC23, §2.3.10] and the references therein. □

As dicussed in §3.3.5 and §3.3.6, a special role is played by solutions of the
s-independent equation (Floer’s differential equation):

(9) ∂su+ Jζ(u)(∂tu−Xζ,t(u)) = 0,
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where u is defined on a cylinder and Jζ , Xζ,t are the asymptotic almost
complex structure and Hamiltonian vector field associated to a puncture ζ.

This equation also has a linearized operator, and it is also important to
achieve transversality for this. However, the perturbation term can no longer
be used, since we require p to be supported away from the punctures. In
this case, we achieve transversality by assuming the asymptotic vector fields
Xζ,t are sufficiently generic. As shown in [FHS95], transversality can be
achieved by perturbing Xζ,t in a small, compactly supported way, away from
its non-degenerate orbits; see also [BC24, §4.1]. This requires us to slightly
amend condition (2) from §3.2.3 by requiring that Xζ,t is sufficiently generic
(in addition to having non-degenerate 1-periodic orbits). Henceforth, we will
assume asymptotic data is sufficiently generic to achieve transversality for
Floer’s differential equation.

3.4. Floer cohomology. In this section we define the Floer cohomology persis-
tence module c ∈ R 7→ Vc ∈ Vect(Z/2Z), with its three additional structures:
the product, the BV-operator, and the map H∗(W ) → V0.

The reader who is comfortable with these structures should feel free to skip
to §3.5.

3.4.1. The Floer complex. Let Ht, t ∈ R/Z, be a smooth family in H, and
suppose that the associated Hamiltonian vector field Xt has non-degenerate
1-periodic orbits. Let J be an almost complex structure on W which is
ω-tame and Liouville invariant outside of Ω. Moreover, suppose that Xt

is sufficiently generic that the space of finite energy solutions to Floer’s
differential equation is cut transversally, as explained in §3.3.8. Let us call
such data (Ht, J) admissible for defining the Floer complex.

The requirements in §3.2 and §3.3 ensure that the asymptotics (Hζ,t, Jζ)
which appear in the general form of Floer’s equation §3.3.3 are admissible
for defining the Floer complex.

Given admissible data, the Floer complex CF(Ht, J) is defined to be the Z/2Z
vector space generated by the 1-periodic orbits of Xt with the differential d
given by counting the one-dimensional components of the moduli space of
finite energy solutions to Floer’s differential equation. The right asymptotic
of the solution is considered as the input of the differential and the left
asymptotic is considered as the output.

The homology of the complex is denoted HF(Ht, J), and is called the Floer
cohomology of the pair (Ht, J).

The details of the definition of the Floer differential, and why it squares to
zero, are well-known; see, e.g., [Flo89, HS95, Sal97]. The requisite regularity
and compactness results follow from our general discussion in §3.3. One
aspect of the argument we do not explain is the Floer theory gluing argument
used the relate the coefficients appearing in d ◦ d to the two-dimensional
components of the moduli space of Floer differential cylinders; we refer the
reader to, e.g., [Sal97, §3.3] for an exposition of this gluing theory.



32 FILIP BROĆIĆ AND DYLAN CANT

Let us comment on one slightly non-standard aspect of the systems that we
consider. We do not assume that Ht = cr holds in the end for a fixed slope
c; rather, our definition allows Ht = ctr where ct varies with t. We define
the slope of the family Ht to be the real number:

c(Ht) =

∫ 1

0
ctdt

This number plays a special role in the persistence module: Vc is defined as a
formal limit over all the Floer cohomology groups HF(Ht, J) with c(Ht) = c.

The slope c(Ht) has a geometric interpretation: Xt = ctR holds in the region
r ≥ r0 for r0 large enough (how large depends on the smooth family Ht ∈ H;
see §3.1.1), where R = Xr is the so-called Reeb vector field. Thus the isotopy
obtained by integrating Xt agrees with the Reeb flow for time c(Ht) in the
region r ≥ r0, up to a time reparametrization.

output ∂su+ J(u)(∂tu−Xt(u)) = 0 input

Figure 3. The Floer differential

3.4.2. Continuation maps. Continuation maps are chain maps which relate
the Floer complexes for different choices of admissible data. Because we use
Hamiltonian functions Ht with varying slope, a bit of care is needed to define
continuation maps in the generality we will require.

We define continuation data to be a connection 1-form a and almost complex
structure J on Σ×W , where Σ = R× R/Z, such that:

a = Ks,tds+Hs,tdt,

where Hs,t,Ks,t are smooth families in H satisfying:

(1) Ks,t = bs,tr and Hs,t = cs,tr for r ≥ r0, for an r0 independent of s, t,
(2) ∂scs,t ≤ ∂tbs,t,
(3) Ks,t = ∂sHs,t = 0 for |s| ≥ s0,
(4) Hs,t = Hζ1,t for s ≤ −s0 and Hs,t = Hζ0,t for s ≥ s0,
(5) J = Js,t satisfies Js,t = Jζ1 for s ≤ −s0 and Js,t = Jζ0 for s ≥ s0,
(6) (Hζ0,t, Jζ0) and (Hζ1,t, Jζ1) are admissible for defining CF.

Such data is called continuation data from (Hζ0,t, Jζ0) to (Hζ1,t, Jζ1), i.e., as
in the Floer differential, we consider the right asymptotic to be the input.

A homotopy of continuation data is a connection one-form and almost complex
structure on R×Σ×W such that the restriction to {τ}×Σ×W satisfies (1)
through (6) for each τ , with fixed asymptotic data (Hζ0,t, Jζ0) and (Hζ1,t, Jζ1),
and such that the numbers r0, s0 can be taken to be independent of τ, s, t.
One says that the continuation data obtained by restricting to {0} × Σ×W
and {1} × Σ×W are homotopic.

Lemma 33. Given asymptotic data (Hζ0,t, Jζ0) and (Hζ1,t, Jζ1) satisfying (6),
there exists continuation data between them if and only if the slope of Hζ0,t

is at most the slope of Hζ1,t. In this case, there is a homotopy between any
two choices of continuation data.
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Proof. First suppose there exists continuation data. Introduce the averages:

c(s) =

∫ 1

0
c(s, t)dt.

Then one uses the requirement (2) to show:

∂sc(s) ≤
∫ 1

0
∂tb(s, t)dt = 0.

In particular, the slope at the left end is greater than the slope at the right
end. This proves the “only if” part of the first assertion.

For the “if” part, we fix a standard cut-off function β(s) and define:

Hs,t = β(s)Hζ0,t + (1− β(s))Hζ1,t

Ks,t =

∫ t

0

∂

∂s
Hs,τdτ − t

∂

∂s

∫ 1

0
Hs,τdτ.

It is straightforward to check that Hs,t,Ks,t are 1-periodic in the t-variable,
and that properties (1) through (4) are satisfied. It is important that the
slope of Hζ0,t is less than the slope of Hζ1,t in order for (2) to be satisfied, as
it ensures that:

∂

∂s

∫ 1

0
Hs,τdτ ≤ 0 on the region where r ≥ r0.

One uses the contractibility of the space of almost complex structures to
extend the asymptotic complex structures Jζ0 and Jζ1 such that (5) is
satisfied.

Finally we prove that any two continuation data between the same asymptotic
systems are homotopic. This is straightforward, as one can simply take a
convex combination of two one-forms a and easily verify the properties (1)
through (4) (which are all preserved under convex combinations), and again
appeal to the contractibility of the space of almost complex structures. This
completes the proof. □

Given continuation data (a, J) between (Hζ0,t, Jζ0) and (Hζ1,t, Jζ1), one
interprets the counts the rigid solutions of the moduli space of finite energy
solutions to §3.3.3 with generic perturbation term p as defining the coefficients
in a linear map (called a continuation map):

CF(Hζ0,t, Jζ0) → CF(Hζ1,t, Jζ1)

Here rigid means the counting the zero-dimensional components of the moduli
space, which is assumed to be cut transversally.

Let us comment on one aspect related to why the count of rigid elements
is finite: condition (2) ensures that the connection 1-form a has curvature
bounded from above. Indeed, the curvature two-form was given by:

r = (∂sHs,t − ∂tKs,t + ω(XK
s,t, X

H
s,t))ds ∧ dt,

and since XK
s,t, X

H
s,t are proportional when r ≥ r0 (both point in the direction

of the Reeb flow), we have:

r = (∂scs,t − ∂tbs,t)rds ∧ dt
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when r ≥ r0, and this is non-positive.

The details of the construction of the continuation map are standard; these
maps form a basic ingredient in the Floer cohomology TQFT which has
been carefully constructed in the open case by [Rit13]; see also [Sch95, HS95,
Abo15].

Standard arguments show:

(1) the continuation map is a chain map,
(2) the chain homotopy class of the map is independent of the generic

perturbation p or the homotopy class of continuation data,
(3) the composition of two continuation maps is a continuation map,
(4) the continuation map HF(Ht, J) → HF(Ht, J) is the identity map.

We will not review these standard arguments, and refer the reader to, e.g.,
[Sch95, HS95, Rit13, Abo15]. Let us comment that (1), (2), and (3) are
based on gluing arguments similar to those used to prove d ◦ d = 0.

A standard consequence of (1) through (4) is, if (Hζ0,t, Jζ0) and (Hζ1,t, Jζ1)
are admissible for defining CF, and Hζ0,t and Hζ1,t have the same slope, then
their Floer homologies are canonically isomorphic. We will continue with
this line of reasoning in the next subsection §3.4.3.

3.4.3. The Floer cohomology persistence module. Let D be the category
whose objects are pairs (Ht, J) which are admissible for defining the Floer
complex, and where there is a unique morphism (Hζ0,t, Jζ0) → (Hζ1,t, Jζ1) if
the slope of Hζ0,t is at most the slope of Hζ1,t, and no morphisms otherwise.
The assignment:

(Ht, J) 7→ HF(Ht, J),

together with the continuation map construction induces a functor:

HF : D → Vect(Z/2Z),
where Vect(Z/2Z) is the category of vector spaces over the field Z/2Z. In
a certain sense to made precise, this functor factorizes through the functor
D → (R,≤) which sends (Ht, J) to its slope.

Summarizing, we have a diagram of the form:

D

(R,≤) Vect(Z/2Z),

slope HF

V

and the claim is that there is a persistence module V which makes the
diagram commute in the following sense:

Lemma 34. There exists a functor V : (R,≤) → Vect(Z/2Z) equipped with a
natural isomorphism:

I : V ◦ (slope) → HF

of functors defined on D. Moreover, any two such (V, I), (V ′, I ′) are isomor-
phic, in that there is a unique natural isomorphism U : V → V ′ making the
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diagram:

V ◦ slope V ′ ◦ slope

HF HF

I

U

I′

id

commute; the diagram is valued in the category of functors D → Vect(Z/2Z).

Proof. The argument is essentially abstract nonsense. For each c, consider
the full subcategory D(c) of objects (Ht, J) where the slope of Ht is no less
than c. The restriction of HF to this category is again a functor, and we
define the category theory limit:

Vc = lim
D(c)

HF;

see, e.g., [Mac71, Alu09] for details on category theory limits.

Prosaically speaking, we define Vc as the inverse limit of the Floer cohomolo-
gies of Hamiltonian systems whose slopes are at least c. If c is not the period
of a Reeb orbit of the Reeb flow associated to ∂Ω, then D(c) has initial
objects (Ht, J), and then the limit is isomorphic to HF(Ht, J); this produces
the natural isomorphism I. If c is the period of a Reeb orbit, then D(c) does
not have an initial object; in this case, it is possible that Vc is an infinite
dimensional vector space; these outputs of the persistence module can be
thought of as living in the “completion” of the category of finite dimensional
vector spaces.

Proving that any other construction (V ′, I ′) is canonically isomorphic to our
(V, I) is straightforward application of universal properties of limits, and
other abstract nonsense. □

Henceforth, we will refer to the functor V : R → Vect(Z/2Z) as the Floer
cohomology persistence module associated to Ω.

Let us comment that, if the set of periods of the Reeb flow (i.e., its spectrum)
is discrete, then Vc is finite dimensional for all c (although we will not use
this fact). In the same vein, if c ∈ R is such that (c, c+ ϵ) contains no points
in the spectrum of the Reeb flow, then Vc is finite dimensional. As a special
case, V0 is finite dimensional.

3.4.4. The pair-of-pants product. In this section, we briefly recall the pair-
of-pants product structure on Floer cohomology groups. The details of the
construction will be important in the sequel, but for now, let us summarize
the resulting algebraic structure.

Let D3 be the full subcategory of D×D×D consisting of data:

((Hζ0,t, Jζ0), (Hζ1,t, Jζ1), (Hζ∞,t, Jζ∞)),

where Hζ∞,t has a slope no less than the sum of the slopes of Hζ0,t and Hζ1,t.
There are two functors defined on D3:

T1 = HF(Hζ0,t , Jζ0)⊗HF(Hζ1,t, Jζ1),

T2 = HF(Hζ∞,t , Jζ∞),

the “pair-of-pants product” is a natural transformation ∗ : T1 → T2.
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Via suitable abstract nonsense, this induces a natural transformation:

∗ : Vc0 ⊗ Vc1 → Vc∞

between two functors defined on the subcategory of R3 (a partially ordered
set) consisting of those objects (c0, c1, c∞) where c∞ ≥ c0 + c1. The partial
order on R3 is the one where (c0, c1, c∞) ≤ (c′0, c

′
1, c

′
∞) if and only if ci ≤ c′i

for each i = 0, 1,∞.

The construction of ∗ is formally similar to the construction of continuation
maps: one defines a class of pair-of-pants data which consists of connection
one-forms a and almost complex structures J , and then uses perturbations p
to define a transversally cut-out moduli space whose rigid counts are packaged
into a chain map. The resulting map on homology is independent of the
perturbation p and homotopy class of pair-of-pants data (a, J). One shows
the map on homology commutes with continuation maps (in a suitable sense)
and therefore induces the aforementioned natural transformation ∗.
In the rest of this section, we describe the construction of the pair-of-pants
product, with focus on the details relevant to the proof of Theorem 7.

We begin by defining pair-of-pants data, which is a connection one-form a
and almost complex structure on Σ×W where Σ = C \ {0, 1}. We require
the following properties:

(1) a = Hζi,tdt and J = Jζi holds in standard cylindrical ends around
the i = 0, 1,∞ punctures, and (Hζi,t, Jζi) are admissible for defining
the Floer complex

(2) a = fx,yrdx + gx,yrdy holds outside of r ≥ r0, where f, g ∈ R vary
smoothly with x, y,

(3) ∂xgx,y − ∂yfx,y ≤ 0.

Here a standard cylindrical end around z = 0, 1 is obtained by parametrizing
a disk around z by [0,∞)×R/Z using the exponential map, and a standard
cylindrical end around z = ∞ is obtained by parametrizing the complement
of a disk around 0 by (−∞, 0]×R/Z, again using the exponential map. One
breaks the rotational symmetry by requiring that the line t = 0 is aligned
with the positive real axis.

We say such data goes from (Hζ0,t, Jζ0), (Hζ1,t, Jζ1) to (Hζ∞,t, Jζ∞).

Similarly to the case of the continuation data in §3.4.2, one can speak of
homotopies of pair-of-pants data. The analog of Lemma 33 is:

Lemma 35. Given (Hζi,t, Jζi) for i = 0, 1,∞, there exists pair-of-pants data
if and only if the slope of Hζ∞,t is no less than the sum of the slopes of Hζ0,t

and Hζ1,t. In this case, there is a unique homotopy class of pair-of-pants
data.

Proof. The key idea in the proof is to consider a = fx,ydx + gx,ydy as a
one-form on Σ. The integral of da (which is compactly supported) over Σ is
the difference in slopes:∫

Σ
da = c(Hζ0,t) + c(Hζ1 , t)− c(Hζ∞,t);
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such an observation appears in, e.g., [Rit13]. This proves the “only if” part
of the first assertion. The “if” part is a straightforward construction. Finally,
the uniqueness of the homotopy class follows from the convexity of the space
of pair-of-pants data (and the contractibility of the space of almost complex
structures). □

Given pair-of-pants data (a, J), and a generic perturbation one-form p, one
packages the counts of the rigid finite energy solutions to §3.3 into a map:

(10) ∗ : CF(Hζ0,t, Jζ0)⊗ CF(Hζ1,t, Jζ1) → CF(Hζ∞,t, Jζ∞).

The counts of rigid elements are finite because a has curvature bounded
above — this is a consequence of requirement (3), and also our assumption
that ω is exact; see the discussion in §3.3.7.
As explained in [Sch95, Rit13], this map is a chain map, and its chain
homotopy class is independent of the perturbation term p and the homotopy
class of the pair-of-pants data. The resulting map on homology is the product
structure explained at the start of this section. The claimed naturality
of the product operation follows from the fact that (10) commutes with
continuation maps, up to chain homotopy; this standard fact is proved in,
e.g., [Sch95, Rit13]; one indication of why this holds is that if one “glues”
continuation data to pair-of-pants data, one obtains new pair-of-pants data.
The detailed argument involves Floer theoretic gluing and we defer the
precise argument to the aforementioned references.

We end this section by commenting on one detail which will be important
in the sequel. The product operation is defined by counting finite energy
solutions to §3.3, and the fact that solutions have non-negative energy integral

implies an inequality involving the values of
∫ 1
0 Hζi,t at the three asymptotics

(see the energy estimate Lemma 30). For well-chosen pair-of-pants data, this
inequality essentially says the product “respects action filtrations;” this will
be used in a crucial way in the proof of Theorem 7 in §3.6.8. We will return
to this point and discuss the relevant action filtrations in §3.6.7. For other
results on the interaction between the product structure and action filtration,
we refer the reader to [Sch00, EP03, KS21, AAC23].

3.4.5. The BV-operator on Floer cohomology. The BV-operator is a natural
endomorphism of functors D → Vect(Z/2Z):

∆ : HF → HF;

abstract nonsense yields an endomorphism ∆ of the persistence module V .
The goal of this section is to briefly explain its construction. We refer the
reader to [Abo15, pp. 326] for a detailed exposition.

We define BV-data to be a connection one-form a = Kθ,s,tds+Hθ,s,tdt and
almost complex structure J on the family of domains R/Z× Σ×W , where
Σ = R× R/Z is the cylinder, satisfying:

(1) a = Ht+θdt for s ≤ −s0,
(2) a = Htdt for s ≥ s0,
(3) Hθ,s,t = cθ,s,tr and Kθ,s,t = bθ,s,tr for r ≥ r0,
(4) ∂scθ,s,t ≤ ∂tbθ,s,t,
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(5) J is fixed ω-tame almost complex structure on W , which is Liouville
equivariant outside of Ω(1),

(6) (Ht, J) is admissible for defining the Floer complex,

for some positive r0, s0, and where θ is the R/Z coordinate on R/Z×Σ×W .

As in §3.4.2 and §3.4.4, one can speak about homotopies of BV-data; such
homotopies are required to satisfy the above properties with fixed Ht, J at
all moments.

There is an analog of Lemma 33 and Lemma 35.

Lemma 36. There exists BV-data for any data (Ht, J) which is admissible
for defining CF. Moreover, there is a unique homotopy class of BV-data.

Proof. The existence of at most one homotopy class follows from the convexity
of the space of BV-data with fixed (Ht, J). It remains only to prove there
exists some BV-data.

The construction is rather simple; one defines:

Hθ,s,t := (1− β(s))Ht+θ + β(s)Ht,

where β(s) is a standard cut-off function, and then defines:

Kθ,s,t :=

∫ t

0
∂sHθ,s,τdτ − t

∫ 1

0
∂sHθ,s,τdτ =

∫ t

0
∂sHθ,s,τdτ.

Note the similarity between this and the construction used in Lemma 33.
The formula for Kθ,s,t simplifies because ∂sHθ,s,t has zero time average —
the slope of Hθ,s,t is constant as s varies.

One easily verifies the enumerated conditions hold. Indeed, one verifies
directly that ∂sHθ,s,t = ∂tKθ,s,t, which implies2 (4). This completes the
proof. □

The way BV-data is used to define a map ∆ : CF(Ht, J) → CF(Ht, J) follows
the same lines as §3.4.2 and §3.4.4. Briefly, one picks generic perturbation
one-form p on R/Z× Σ×W , and defines the map whose coefficients are the
counts of rigid finite-energy solutions to §3.3.3.
Let us briefly explain how to interpret the count of solutions as coefficients in
a matrix. If (θ, u) is a rigid finite energy solution, then u(s, t) → γout(t+ θ)
as s→ −∞ and u(s, t) → γin(t) as s→ ∞, where γin and γout are 1-periodic
orbits of the system generated by Ht; we consider u as contributing to the
coefficient in the matrix with entry (γout, γin).

3.4.6. PSS and inclusion of the constant loops. Recall the full subcategory
D(0) of objects (Ht, J) ∈ D where the slope of Ht is no less than 0. In this
section we explain how to define the PSS morphism, which can be considered
as a natural transformation:

PSS : H∗(W ) → HF|D(0);

2Let us observe that, for any BV data, ∂scθ,s,t − ∂tbθ,s,t has zero time-average, and
hence must be constant. Thus we could replace (4) by the apparently stronger condition
∂scθ,s,t = ∂tbθ,s,t without any loss of generality.
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in order to interpret PSS as a natural transformation, the domain H∗(W ) is
considered as a constant functor on D(0). Abstract nonsense (i.e., taking
limits) shows that PSS descends to a homomorphism:

PSS : H∗(W ) → V0;

see §3.4.3.
The PSS construction goes back to [PSS96], and has been generalized to the
setting of convex-at-infinity symplectic manifolds in [FS07, Rit13]. Typically
one works with a Morse theory version of H∗(W ). In our framework, recall
from §1.5.1 that we prefer to work with a proxy for singular cohomology, and
instead define H∗(W ) to be the group of smooth proper maps C : S →W
modulo proper cobordisms.

We define PSS-data to be a connection one-form a and almost complex
structure J on Σ×W where3 Σ = C which, in the cylindrical coordinates
z = e−2π(s+it), satisfies:

(1) a = Ks,tds+Hs,tdt,
(2) a = 0 for s ≥ s0,
(3) a = Htdt for s ≤ −s0,
(4) Ks,t = bs,tr, Hs,t = cs,tr for r ≥ r0,
(5) ∂scs,t ≤ ∂tbs,t,
(6) J is fixed as in §3.4.5,
(7) (Ht, J) ∈ D.

Note that it follows from (2), (4), and (7) that (Ht, J) ∈ D(0). PSS-data
is similar to continuation data from (0, J) to (Ht, J), the only difference
being that (0, J) is not actually admissible for defining the Floer complex,
and so we consider the puncture at s = ∞ (namely z = 0) as a removable
singularity.

For a cycle C : S →W , we define PSS(C) ∈ CF(Ht, J) as a cycle. Fix PSS
data (a, J), which we pull back to the family S × Σ ×W . Fix a generic
perturbation term p, and count the rigid finite energy solutions (σ, u) to §3.3
satisfying the incidence constraint:

u(0) = C(σ).

One counts the asymptotic orbits of u as a linear combination in CF(Ht, J).
The arguments from [PSS96, FS07, Rit13] adapt easily to the present case to
show that this linear combination is a cycle in CF(Ht, J). The cohomology
class of this cycle is independent of p, the PSS-data chosen, and even the
proper cobordism class of F . By construction, one sees that PSS is a
linear map H∗(W ) → HF(Ht, J). Finally, the standard Floer theory gluing
arguments show that PSS is a natural homomorphism, i.e., it commutes with
continuation maps.

This concludes the specification of the Floer theory framework used in the
paper.

3More precisely, in the terminology of §3.2.1, Σ = CP 1 with Γ− = {∞}, so the punctured
surface is C.
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3.5. Evaluation maps and ball embeddings. Fix a map f : N → Ω, where N
is a closed manifold. The goal of this section is to explain how a lift of f to
B(a,Ω)/U(n), as in §1, is used to define an evaluation map e : Vc → Z/2Z
for 0 < c < a which satisfies:

e(PSS(β)) = 1

provided that β = [C] where C : S →W is a cycle with non-zero homological
intersection number with f .

In particular, a consequence we will deduce by the end of this section is:

Proposition 37. If f lifts to B(a,Ω)/U(n), and β ∈ H∗(W ) has non-zero
homological intersection number with f , then PSS(β) ̸= 0 in Vc for c < a.

Remark. One can define a capacity by the number:

c(β,Ω) = inf{c : PSS(β) = 0 in Vc};
Proposition 37 implies Gr(f,Ω) ≤ c(β,Ω). In the special case when β = [W ],
we conclude the estimate that Gr(f,Ω) ≤ c([W ],Ω); see, e.g., [BK22].

Without any true loss of generality, we assume that f lifts to B(a′,Ω)/U(n)
for some number a′ > a. We will appeal to such an extension in some of the
subsequent arguments.

3.5.1. Family of Hamiltonian functions associated to a family of balls. Intro-
duce a convex function µ : R → R such that:

(1) µ(x) = x for x ≥ 1,
(2) µ(x) = 1/2 for x ≤ 0,

and introduce the autonomous Hamiltonian function:

Gc,δ = cδµ(δ−1(r − 1)) + c

for a fixed non-negative constant c and a very small parameter δ > 0. Then:

(1) Gc,δ agrees with cr outside of a neighbourhood of Ω (indeed, the
neighborhood is {r ≥ 1 + δ}),

(2) Gc,δ equals the constant c+ cδ/2 on the domain Ω.

One should consider this Hamiltonian as the background Hamiltonian system.

Recall that the parametric Gromov width concerns maps f : N → Ω together
with:

(1) an open cover Uα of N ,
(2) smooth maps gαβ : Uα ∩ Uβ → U(n),
(3) extensions Fα : Uα ×B(a) → Ω satisfying Fβ(η, z) = Fβ(η, gαβ(η)z)

for η ∈ Uα ∩ Uβ.

We will use the extensions of Fα to define an η-parametric family of pertur-
bations of the Hamiltonian Gc,δ.

Let us denote by Bη the image of of z 7→ Fα(η, z), for any α such that η ∈ Uα.
The image of this ball, and the radial coordinate |z|, is independent of the
choice of α.
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Let Dη : W → R be a smooth family of functions, parametrized by η ∈ N ,
with compact support in Ω and such that:

(1) {Dη < 0} is the interior of Bη,
(2) Dη ◦Bη(z) = π|z|2 − a.

Such a family will be constructed in Lemma 38 below using slight extensions
of Bη. Note that the constants are chosen so that Dη vanishes on the
boundary of Bη.

The η-parametric family of perturbations of Gc,δ we will use in our construc-
tion is:

(11) Hc,δ,ϵ,η = Gc,δ + ϵDη,

which depends on parameters c, δ, ϵ > 0, and η ∈ N . We will denote the
Hamiltonian vector field of this function by Xc,δ,ϵ,η.

Remark. In the following lemma, we discuss the action of an orbit γ(t) of a
system generated by Hamiltonian function Ht, which is defined as:∫

Ht(γ(t))dt−
∫
γ∗λ,

as is typical in Floer theory in exact symplectic manifolds.

Remark. We will also refer to the period spectrum of the Reeb vector field
Xr, which we denote by Per(Xr).

Lemma 38. The family Dη can be chosen so that, for ϵ < 1 and c not a
period of Xr, the contractible 1-periodic orbits of Xc,δ,ϵ,η are of three types:

(1) constant orbits in Ω lying outside Bη, with action at least c+ cδ/2,
(2) a single constant orbit at the center of Bη, with action c+ cδ/2− ϵa,
(3) non-constant periodic orbits of Xr lying in the hypersurfaces defined

by cµ′(δ−1(r0 − 1)) = b ∈ Per(Xr), with action at least c− b.

In particular, if ϵa > b+ cδ/2 for all b ∈ Per(Xr) ∩ [0, c], there are no non-
constant finite energy Floer cylinders for Xc,δ,ϵ,η whose negative asymptotic
is in (2). If a > c, then we can achieve this conclusion for ϵ close enough to
1 and δ close enough to 0.

Proof. As mentioned in §3.5, we will appeal to a small extension B(a) ⊂ B(a′).
Fix a smooth function ρ : R → R such that ρ(x) = x for x ≤ a, ρ(x) ≥ a for
x ∈ [a, a′], and ρ(x) = a for x ≥ a′, and such that |ρ′| ≤ 1 holds at all points.

Then we define D(z) = ρ(π|z|2)− a which can be pushed forward using the
ball embedding Bη(a

′) → Ω to define the desired family of functions Dη.

Then it is easily seen that the only orbits inside Ω are the orbits of types (1)
and (2) with the claimed actions. The only other orbits are orbits of Gc,δ

appearing outside of Ω. A standard computation shows that these orbits are
orbits lying in a fixed radius r = r0 satisfying cµ′(δ−1(r0−1)) = b ∈ Per(Xr).

In this case we use the fact that λ(Xr) = r to compute their action as:

action = cδµ(δ−1(r0 − 1)) + c− cµ′(δ−1(r0 − 1))r0.

Simplifying we see that:

action = c− b+ cf(r0 − 1)
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where:
f(x) = −µ′(δ−1x)x+ δµ(δ−1x).

Using the convexity of µ, one sees that f ′(x) ≤ 0, and since f(x) = 0 for
x ≥ δ (since µ(s) = s for s ≥ 1), we conclude that f(x) ≥ 0. This gives the
desired result. □

Remark. In the proof we implicitly appealed to the well-known fact that the
action of the left end of a Floer cylinder is at least the action of the right
end; this is a special case of the general energy identity proved in Lemma 29.

a a′

a

Figure 4. Graph of ρ : R → R

3.5.2. Definition of the evaluation-map. We continue in the context of the
previous subsection. Let (Ht, J) ∈ D where Ht has slope at most a > 0,
where a is the capacity appearing in the lift of f to B(a,Ω)/U(n).

In this subsection, we explain how a family of continuation data from (Ht, J)
to (Hc,δ,ϵ,η, Jη) parametrized by η ∈ N can be used to define an evaluation
map provided ϵa > c(1 + δ/2) and where c is no less than the slope of Ht.

Let us therefore define evaluation data to be a connection one-form a and
almost complex structure J on the family on N×Σ×W where Σ = R×R/Z,
satisfying:

(1) a = Kη,s,tds+Hη,s,tdt,
(2) Ks,t = bη,s,tr and Hs,t = aη,s,tr for r ≥ r0,
(3) ∂scη,s,t ≤ ∂tbη,s,t,
(4) a = Htdt for s ≥ s0,
(5) a = Hc,δ,ϵ,ηdt for s ≤ −s0, where ϵa > c(1 + δ/2),
(6) J is fixed, i.e., independent of η, s, t, for s ≥ s0,
(7) J = Jη for some fixed family Jη for s ≤ −s0.

We comment that such data deviates slightly from the framework established
in §3.2 and §3.3, in that we allow the asymptotic data to depend on η ∈ N
at the left end. We will explain shortly why this does not cause any issues.

Introducing a generic perturbation one-form p, one can still consider the
finite energy solutions to Floer’s equation §3.3.3.
For data (a, p, J), introduce M as the moduli space of finite energy solutions
(η, u) such that the left asymptotic of u is the constant orbit located at the
center of the ball Bη. Since this central orbit is non-degenerate for each η,
the space of solutions M behaves as if the asymptotic data at the left end
were independent of η, at least as far as the results in §3.3 are concerned.
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Remark. Some care is needed to properly define the linearization framework
when the asymptotic data changes; see, e.g., the proof of Lemma 40.

The key result about M is the following:

Lemma 39. Suppose the perturbation term p is such that M is cut transver-
sally. If (ηn, un) is a sequence of rigid solutions M, then (ηn, un) has a
convergent subsequence in M. If (ηn, un) is a sequence of solutions in the
1-dimensional component of M, then (ηn, un) has a subsequence which either
converges in M, or which breaks into configuration of a rigid solution in M

on the left and a Floer differential cylinder for (Ht, J) on the right (in the
sense discussed in §3.3.6).

Proof. This is mostly standard Floer theory; the only non-standard thing we
need to check is that a sequence of solutions in the 1-dimensional component
of M does not break into a configuration of a non-stationary Floer differential
cylinder for (Hc,δ,ϵ,η, Jη) on the left and a rigid solution in M on the right.
However, such a breaking can be precluded by action considerations, since
we have shown in Lemma 38 that there are no non-constant Floer differential
cylinders for (Hc,δ,ϵ,η, Jη) whose left asymptotic is the central orbit. □

To define the map e : CF(Ht, J) → Z/2, we define:

e(γ) = #{u ∈ M : lim
s→∞

u(s, t) = γ(t)} mod 2.

Lemma 39 and standard Floer theory gluing arguments imply that e is a
chain map, i.e., e ◦ d = 0.

Since the space of evaluation data is weakly contractible, for fixed input
system (Ht, J), the standard arguments show that the chain homotopy
class of e is independent of the choice of evaluation data. The resulting
map on homology is denoted e : HF(Ht, J) → Z/2. Summarizing, we have
constructed a map:

e : HF(Ht, J) → Z/2Z
on the full subcategory D<a ⊂ D consisting of objects with slope at most a.
Finally, the usual gluing arguments prove that e is a natural transformation,
where Z/2Z is interpreted as a constant functor.

In the next section, we prove that e ◦ PSS : H∗(W ) → Z/2Z sends β to 1
provided that β has non-zero intersection with the cycle η 7→ F (η, 0).

3.5.3. Non-triviality of the evaluation map. We continue in the context of
the previous two subsections. Let β ∈ H∗(W ) have non-zero homological
intersection with the cycle η 7→ F (η, 0). Pick a representative C : S →W of
β which is transverse to the cycle η 7→ F (η, 0), so that the set of pairs (σ, η)
solving C(σ) = F (η, 0) is a finite odd set of points.

Define glued evaluation PSS data to be a connection one-form a and almost
complex structure J on the family N × C×W such that, in the cylindrical
coordinates z = e−2π(s+it),

(1) a = Kη,s,tds+Hη,s,tdt,
(2) Ks,t = bη,s,tr and Hs,t = cη,s,tr for r ≥ r0,
(3) ∂scη,s,t ≤ ∂tbη,s,t,
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(4) a = 0 for s ≥ s0,
(5) a = Hc,δ,ϵ,ηdt for s ≤ −s0, where ϵa > c(1 + δ/2), c ≥ 0,
(6) J = J+,η for s ≤ −s0 and J = J−,η for s ≥ s0, for two fixed families

J−,η and J+,η.

Roughly speaking, glued evaluation PSS data is the data one obtains by
gluing the evaluation data from §3.5.2 to the PSS-data from §3.4.6.
Similarly to §3.4.6 and §3.5.2, we pull back glued evaluation PSS data to the
family S ×N × C×W , and for a generic perturbation term p, we consider
the moduli space M of finite energy solutions (σ, η, u) to §3.3.3 satisfying the
incidence condition:

u(0) = C(σ),

and such that the asymptotic orbit of u is the constant orbit located at the
center of the ball Bη.

Lemma 40. We have the following:

(a) all components of M are compact,
(b) the count of points in the rigid component of M is independent of the

choice of glued evaluation PSS data and perturbation one-form p,
(c) the count of points in the rigid component of M equals e(PSS(β)),
(d) the count of points in the rigid component of M is odd;

all counts are taken mod 2. Thus e(PSS(β)) = 1, proving Proposition 37.

Proof. Part (a) follows from the same compactness-up-to-breaking argument
used in the proof of Lemma 39. A sequence of solutions will, in general,
have a subsequence which converges or breaks into a configuration of a
non-stationary Floer differential cylinder and another solution in M. There
is only one end where the breaking can happen (the left end). Since we
require that solutions in M are asymptotic to the central orbit at the left
end, and the only Floer differential cylinders whose left end is the central
orbit are constant (by Lemma 38), we conclude there can be no breaking.

Part (b) follows from a cobordism argument: because the space of data is
path connected, the rigid counts for two choices of data are cobordant finite
sets of points, and hence have the same cardinality mod 2; here we note
that the parametric moduli space used in such a cobordism argument will
be compact by the exact same argument used for (a).

Part (c) follows from Floer theoretic gluing. By picking the glued evaluation
PSS data as a concatenation of evaluation data (§3.5.2) and PSS-data (§3.4.6),
a standard gluing argument shows the count of rigid points in M equals the
count obtained by applying the map e to the cycle PSS(C).

The non-standard part of the argument is establishing (d). For this part of
the argument, we use an explicit choice of data, and directly show the count
equals the (odd) count of pairs (σ, η) satisfying C(σ) = F (η, 0).

Let us pick the data such that c = 0, so that δ becomes irrelevant, and:

Hc,δ,ϵ,η = ϵDη.
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Pick a = (1− β(s))ϵDηdt, and pick J = Jη (so J+ = J−), where Jη agrees
with the standard almost complex structure when pulled back to the ball Bη.
We will show that all solutions in M are regular with p = 0, and therefore
the count without perturbation equals the count with perturbation.

Claim. For ϵ sufficiently small, any solution (σ, η, u) with this specific data
must be such that u is constant and equal to the center of the ball Bη.

This claim follows from a simple adiabatic compactness argument: restricting
to a half-infinite cylinder (−∞, R]×R/Z we can pull u back to a map valued
in B(a) satisfying:

(12) ∂su+ J(∂tu− ϵ(1− β(s))X(u)) = 0

where X is the Hamiltonian vector field for π|z|2, and J is the standard
almost complex structure. Either we can take R = +∞, or we can take R to
be maximal in which case u(R, t) hits the boundary ∂B(a) for some t.

We can take ϵ small enough so that |∂tu| is everywhere less than
√
a/π, by

a simple compactness argument.

Consider the center of mass ξ(s) =
∫ 1
0 u(s, t)dt, so ξ : (−∞, R] → B(a) is a

smooth curve. Using the linearity of the above equation (bearing in mind
that X(u) is actually a linear function of u) one concludes that:

∂sξ(t) = ϵ(1− β(s))JX(ξ).

It is well-known that JX is a vector field which points radially inwards.
Thus, since ξ(s) converges to 0 as s → −∞, we must have that ξ(s) = 0
holds identically. It therefore follows that u(s, t) has mean zero for s ≤ R.

Thus we have R = +∞, since u cannot touch the boundary ∂B(a) because
|∂tu(R, t)| is smaller than the radius of ∂B(a) and u(R,−) has mean zero.
Then one estimates the energy integral of u by:

energy of u =

∫
|∂su|2dsdt ≤ −a+

∫
β′(s)a = 0,

which implies u must be constant, and thus equal to the center of the ball.

Thus M is in bijection with the set of pairs (σ, η) satisfying C(σ) = F (η, 0);
the bijection is simply the projection map (σ, η, u) 7→ (σ, η). It remains only
to prove that these solutions are in fact regular.

To analyze the regularity of these solutions, we need to open the “black box”
of the linearization framework. Let us fix a solution (σ0, η0, u0), and use the
coordinate system induced by the embedded ball Bη0 .

If (σ, η, u) is nearby (σ0, η0, u0), then it solves the equation provided that:

(13)


u = w + f(η) for w ∈W 1,p(Σ)

∂sw + Jη(w + f(η))(∂tw − Vη(w)) = 0

w(0) + f(η)− c(σ) = 0,

where f(η), c(σ) = C(σ), and Vη(z) = ϵXη(z + f(η)) are represented in
the coordinate system. Note that the maps c and f are transverse at their
intersection (σ0, η0).
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Remark. When linearizing with a varying asymptotic, it is important to use
such an auxiliary map w, as it is defined on a fixed Banach space of maps.

The second two equations in (13) can be considered as a non-linear map
defined on a neighborhood of 0 between Banach manifolds:

W 1,p × S ×N → L1,p × R2n.

Differentiating this non-linear map gives the linearized operator.

If (σ′, η′, w′) is a tangent vector at (σ0, η0, 0), the linearized operator is:[
∂sw

′ + J∂tw
′ − ϵJX(w′)− J∂Vη/∂η(0)η

′

w′(0) + df(η0)η
′ − dc(σ0)σ

′

]
∈ Lp ⊕ R2n.

The fact that Vη(0) = 0 holds for all η implies ∂Vη/∂η(0) = 0. Thus the
first component is a Cauchy-Riemann operator W 1,p → Lp. Because ϵX
has a non-degenerate orbit at the origin, this operator is an isomorphism
W 1,p → Lp (by standard Fredholm theory for Floer’s equation). On the other
hand, since f and c are transverse and have complementary dimensions, the
second equation is an isomorphism TSσ0 ⊕TNη0 → R2n. Thus the linearized
operator is an isomorphism, and so the constant solution (σ0, η0, u0) is regular.
This completes the proof. □

3.6. Family Floer cohomology. In this section we develop a version of family
Floer cohomology following the scheme in [Hut08].

Let us briefly comment on the strategy. The identity e(PSS(β)) = 1 proved
in §3.5 implies that any cycle

∑
γi in CF(Ht, J) representing PSS(β) has at

least one orbit γi which appears as the right end of one of the cylinders used
to define e; see Figure 5.

center of Bη ∂su− Yη,s,t(u) + Jη,s,t(u)(∂tu−Xη,s,t(u)) = 0 γi

Figure 5. A consequence of e(
∑
γi) = 1 is the existence of

a cylinder (η, u) joining γi to the center of the ball Bη. In
the figure Y,X are the Hamiltonian generators of K,H where
(a = Kη,s,tds+Hη,s,tdt, Jη,s,t) is evaluation data as in §3.5.2.

It is a general principle that the action of the left asymptotic (the center of
the ball) is at least the action of the right asymptotic (the orbit γi), up to an
error depending on the curvature of the Hamiltonian connection determined
by a; see Lemma 30.

In Lemma 38 it was shown that the action of the center of the ball is equal
to (c+ cδ/2)− a; thus if we can prove that:

(1) the action of γi is greater than c+ cδ/2− a, and
(2) the error coming from the curvature can be made arbitrarily small,

then we have successfully obstructed the family of balls.

Item (1) will ultimately be a consequence of Theorem 7’s hypothesis:

PSS(β) = ∆(ζ1) ∗ ζ2 holds in Vc1+c2 ,
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where ζi ∈ Vci , with ci > 0, provided c := c1 + c2 < a.

However, because the cylinder in Figure 5 appears at an unknown parameter
value η ∈ N , it is not possible to uniformly control the curvature because
the input system (Ht, J) is independent of η.

For this reason, we instead work with a family of input systems (Hη,t, Jη),
and upgrade the map e to be defined on a suitable family version of Floer
cohomology. As we will show, with the family version, one can control the
curvature and simultaneously achieve (1) and (2).

The family Floer cohomology essentially contains no new algebraic informa-
tion (it is the regular Floer cohomology tensored with the cohomology of N);
however, family Floer cohomology grants one access to new action filtrations
on the Floer complex.

The rest of this section is dedicated to developing the necessary theory, and,
in §3.6.8, completing the proof of Theorem 7.

3.6.1. Definition of family Floer cohomology. Let N be a compact manifold.
By definition, family Floer data is:

(1) a Morse-Smale pseudogradient P on N (e.g., a Morse-Smale gradient-
like vector field in the terminology of [Mil65a]),

(2) a smooth family Hη,t in H parametrized by N × R/Z,
(3) a fixed almost complex structure J , which is, as usual, ω-tame and

Liouville invariant in the convex end,

which satisfies:

(4) for each zero η0 of P , there is a neighborhood Op(η0) of η0 such that
Hη,t = Hη0,t, and (Hη0,t, J) is admissible for defining CF(Hη0,t, J).

(5) Hη,t = cr for r ≥ r0.

Note. For simplicity, we do not allow Hη,t to have a time-dependent slope,
unlike the data for the non-family Floer complex. The reason for this is
that we have no need to appeal to time-dependent slopes in the family Floer
complex; on the other hand, time-dependent slopes will be used for the
regular Floer complex in §4.
For each zero η0 of P , associate the one-dimensional vector space Z/2Zη0;
for family Floer data (P,Hη,t, J) define the family Floer complex :

CFF(P,Hη,t, J) =
⊕

CF(Hη0,t, J)⊗ Z/2Zη0,

where the direct sum is over the zeros of P . Thus it makes sense to refer to
a generator γ ⊗ η0 whenever γ(t) is a 1-periodic orbit of Hη0,t.

In the rest of this section we will explain how to define the differential dFF
on the family Floer complex. As part of the definition, we will need to
require that certain auxiliary moduli spaces are cut transversally, and this
will impose a genericity condition on the family Hη,t.

For each pair (η1, η0) of zeros of P , one can consider the (open) manifold
P(η1, η0) of parametrized flow lines π(s) from η1 to η0 for the negative pseu-
dogradient −P ; here η1 is the left asymptotic and η0 is the right asymptotic.
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Fixing (η1, η0), there is an induced connection and perturbation one-form,
and almost complex structure, on the family P(η1, η0)× Σ×W , where Σ is
the cylinder; precisely, one defines the family of data by:

aπ,s,t = Hπ(s),tdt Jπ,s,t = J.

It is important to note that, since Hη,t = cr for r ≥ r0, the curvature of a
vanishes outside of a compact set.

One can consider the finite energy solutions to §3.3.3 for this family of data.
Unwinding the definitions, one sees that a solution is a pair (π, u) solving:

∂su+ J(u)(∂tu−Xπ(s),t(u)) = 0.

One defines M(η1, η0) to be the moduli space of such finite energy solutions.

Lemma 41. For generic perturbation of Hη,t away from the zeroes of P , all
the moduli spaces M(η1, η0) are cut transversally.

Proof. Note that, since π(s) lies in the neighborhood Op(η0)∪Op(η1) outside
of a compact set, Xπ(s),t is s-independent outside of a compact set.

If η1 ̸= η0, then there is a non-empty interval where Xπ(s),t is actually s-
dependent. In that case we can perturb Xη,t generically away from the zeroes
in such a way that Xπ(s),t is modified in a generic fashion only a compact
part of the cylinder; such variations are sufficient to ensure transversality
(compare with [Sei15, pp. 971]).

In the case when η1 = η0, then u solves the Floer differential equation for
(Hη0,t, J), and so requirement (4) implies u is regular. In other words, the
moduli space M(η0, η0) is simply the moduli space considered in §3.4.1 for
the admissible data (Hη0,t, J). □

We add one additional requirement to our family Floer data:

(6) the data Hη,t is chosen generically away from the zeros of P so that
all moduli spaces M(η1, η0) are cut transversally.

Data (P,Hη,t, J) which satisfies all of the requirements is said to be admissible
for defining the family Floer complex.

The moduli space M(η1, η0) carries an R-action given by translation:

(π(s), u(s, t)) 7→ (π(s+ s0), u(s+ s0, t)).

Finally, one defines the differential by the formula:

dFF(γ0 ⊗ η0) :=
∑
γ1⊗η1

#{[π, u] ∈ M(η1, η0)/R : u joins γ1, γ0} · γ1 ⊗ η1;

more precisely, we count the one-dimensional components of M(η1, η0) with
the advertised asymptotics.

It is perhaps interesting to note that one can decompose dFF into a sum:

dFF = d0 + d1 + d2 + . . . ,

where di maps a generator γ0 ⊗ η0 into the piece of CFF generated by terms
γ1 ⊗ η1 where Index(η1) = Index(η0) + i. A simple inspection proves that d0
preserves the summand CF(Hη0,t, J)⊗ Z/2Zη0 and acts as d⊗ id where d is
the usual Floer differential.
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The first key lemma of family Floer cohomology is:

Lemma 42. The family Floer differential squares to zero: d2FF = 0.

Proof. This is outlined in [Hut08, Proposition 3.9] in the context of family
Morse homology. We also refer the reader to [Sei15, pp. 970] for a Floer
cohomology set-up closer to the present context.

Briefly, one shows that the number of ends of the one-dimensional component
of M(η1, η0)/R equals the matrix entry for d2FF of type:

CF(Hη0,t, J)⊗ Z/2Zη0 → CF(Hη1,t, J)⊗ Z/2Zη1.
Since the number of ends is even, one concludes d2FF = 0. We refer the reader
who wishes for additional details to the proof of Lemma 43. □

We denote by HFF(P,Hη,t, J) the homology of CFF(P,Hη,t, J) with respect
to dFF.

3.6.2. From Floer cohomology to family Floer cohomology. In this section
we explain how to define a map i : HF(Ht, J) → HFF(P,Hη,t, J) whenever
the slope c ≥ 0 of Hη,t equals the slope of Ht. This map will be referred to
as the comparison map.

To keep things as simple as necessary, we assume that Ht satisfies Ht = cr
for r ≥ r0, i.e., we disallow time-dependent slopes in Ht, and that the same
fixed almost complex structure is used for (Ht, J) and (P,Hη,t, J).

We will construct on HFF(P,Hη,t, J):

(1) a product ∗FF in §3.6.3,
(2) a BV operator ∆FF in §3.6.5,
(3) a map eFF associated to a family of ball embeddings in §3.6.6.

The comparison map i will be shown to respect these structures.

To define i, we follow the usual strategy of defining comparison data, and
then counting the rigid elements in an associated moduli space.

Fix (Ht, J) and (Hη,t, J, P ) which are admissible for defining the Floer
complex and family Floer complex. Define comparison data to be a connection
one-form a on the family N × Σ×W where Σ is the cylinder, satisfying:

(1) a = Hη,s,tdt,
(2) Hη,s,t = cr for r ≥ r0,
(3) Hη,s,t = Ht for s ≥ s0 and Hη,s,t = Hη,t for s ≤ −s0.

One easily shows that the space of comparison data is convex and non-empty;
to see it is non-empty, one can simply take the linear interpolation (bearing
in mind that we assume that Hη,t, Ht both equal cr for r ≥ r0).

As in the definition of dFF, we do not directly consider the solutions of the
moduli space associated to this family (indeed, this family has asymptotics
which depend on η, which would require special treatment). Rather, we will
pull back this data using flow lines of the pseudogradient P .

For each zero η1, introduce P(η1) as the space of flow lines π(s) of −β(−s)P
which converge to η1 as s → −∞. Notice that π(s) is constant for s ≥ 0.
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The space of points appearing as π(0) for π ∈ P(η1) is simply the unstable
manifold of η1.

Comparison data induces a connection one-form a on P(η1)× Σ×W given
by the formula:

aπ,s,t = aπ(s),s,t,

and it is important to note that this family has constant asymptotics, namely:

(1) aπ,s,t = Hη1,t for s ≤ −s1(π),
(2) aπ,s,t = Ht for s ≥ s0.

The threshold s1(π) is not constant throughout the family (note that P(η1)
is an open manifold), but it is locally constant which is sufficient for the
framework established in §3.2.3 and §3.3.
For a generic perturbation term p on P(η1)× Σ×W , and using the almost
complex structure J , one consider the moduli space M(η1) of finite energy
solutions (π, u) of §3.3.3. To ground the discussion with a concrete formula,
here is the equation we are counting when p = 0:

∂su+ J(u)(∂tu−Xπ(s),s,t(u)) = 0;

the perturbation p simply changes the right hand side from 0 to a small
vector field.

By counting the rigid elements in M(η1) whose right asymptotic is equal
to γ ∈ CF(Ht, J), we obtain chains iη1(γ) ∈ CF(Hη1,t, J). The comparison
map i is the sum over all zeros η1 of P :

i(γ) :=
∑

iη1(γ)⊗ η1.

The key lemma concerning this map is:

Lemma 43. The map i : CF(Ht, J) → CFF(P,Hη,t, J) is a chain map with
respect to d and dFF. The chain homotopy class is independent of the generic
perturbation p or the precise comparison data used.

Proof. This argument has no surprising parts. However, the moduli spaces
we consider are less standard, and so we attempt to give a bit more detail
than we have in previous arguments.

First we will prove that i is a chain map. The key is to consider the
one-dimensional component M1(η1). It is convenient to focus on the one-
dimensional components which contain solutions (π, u) where u has asymp-
totics γ1, γ0. Let us refer to this 1-dimensional manifold by M1(η1, γ1, γ0).

As usual with parametric moduli spaces, this admits a smooth map to P(η1)
simply given by (π, u) 7→ π. Because P(η1) is an open manifold, there are
two possible failures of compactness for a sequence (πn, un) ∈ M1(η1, γ1, γ0):

(1) (πn, un) has no convergent subsequence, but πn does;
(2) πn has no convergent subsequence.

Each non-compact component of M1(η1, γ1, γ0) has two non-compact ends,
and each such end is either of type (1) or (2).

In the case of an end of type (1), the usual Floer compactness-up-to-breaking
arguments imply that we can pass to a subsequence so that πn converges to
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π and un breaks into a configuration of a rigid element in M0(η1) connected
to a non-stationary Floer differential cylinder for (Hη1,t, J) at the left end,
or for (Ht, J) at the right end. By consideration of dimensions, the Floer
differential cylinders which broke-off live in one-dimensional families, and
hence are counted by the Floer differential. The gluing result complementary
to this compactness-up-to-breaking result proves that the number of ends of
type (1) equals the coefficient of γ1 ⊗ η1 appearing in:

d0(i(γ0)) + i(d(γ0)),

where we recall dFF = d0 + d1 + . . . . Thus, to complete the argument, it
suffices to prove that the number of ends of type (2) equals the coefficient of
γ1 ⊗ η1 appearing in:

d1(i(γ0)) + d2(i(γ0)) + . . . .

Let us therefore focus on an end (πn, un) of type (2). Because P is assumed
to be a Morse-Smale pseudogradient, one can pass to a subsequence so that
πn breaks into a configuration in the product (π1, π0) ∈ P(η1, η

′) × P(η′)
where the index of η′ is strictly less than the index of η1; see Figure 6.

η′
η1

Figure 6. Morse theoretic breaking of the flow lines into
two pieces. The circle around η0 signifies the open set Op(η′)
where Hη,t = Hη′,t.

As πn breaks into (π1, π0), the equation which un solves separates into two
equations, in the following sense: un(s + sn, t) will solve the equation for
dFF on compact subsets, for any sequence sn → ∞, while the non-translated
solution (πn, un(s, t)) converges to a solution (π0, u+) ∈ M(η′). By picking
sn correctly, the translated solution (πn(s+sn), un(s+sn)) will converge to a
solution (π1, u−). By consideration of dimensions, (π0, u+) is a rigid element
of M(η′), and (π1, u−) is a rigid-up-to-translation element of the moduli
space used to define dk, where k > 0 is the index difference of η1 and η′.
Following similar gluing theory as in [Sei15, pp. 972], each such configuration
actually appears as a non-compact end of type (2), and thereby one shows:

0 = i(d(γ0)) + d0(i(γ0)) + d1(i(γ0)) + d2(i(γ0)) + . . . modulo 2,

because each coefficient in the output is the count of the non-compact ends
of a one-manifold. This completes the proof that i is a chain map.

The proof that the chain homotopy class is independent of the perturbation
p or the comparison data follows similar lines, and we omit the details. □

Remark. The appeal to gluing theory, while appearing non-standard, actually
follows from a general parametric gluing result for continuation cylinders;
this is because the equation which u solves near a breaking can be considered
as a continuation cylinder for concatenated continuation data (varying in a



52 FILIP BROĆIĆ AND DYLAN CANT

parameter space); see Figure 7. The arguments in [Sal97] can be employed
in such a case.

γ1 ∂su+ J(u)(∂tu−Xη′,t(u)) = 0 γ0

Figure 7. Solution near the breaking; on a large subcylin-
der (determined by π(s) ∈ Op(η′)), the equation appears as
Floer’s equation.

3.6.3. The family pair-of-pants product. The product structure on family
Floer cohomology is defined as a combination of the Morse cohomology
product, defined using flow trees as in [Fuk97], and the pair-of-pants product
from §3.4.4. For details on a different Floer theoretic product combining flow
lines and pairs-of-pants, we refer the reader to [Sei15, §4.3].
First we introduce a framework for flow trees: having fixed a Morse-Smale
pseudogradient P on the parameter space N , introduce time-dependent
vector fields P0,s, P1,s, which are defined for s ∈ [−1,∞), vanish when
s ∈ [−1, 1], and agree with P when s ∈ [2,∞). Let P∞,s = β(−s− 1)P .

A flow tree is a configuration (π0, π1, π∞) where πi is a flow line for −Pi,s,
defined on [−1,∞) when i = 0, 1 and on (−∞, 1] when i = ∞, and such that
π0(0) = π1(0) = π∞(0) = η′.

Remark. The fact that πi(s) is defined for s ∈ [−1, 1] and is constant on this
interval will be a convenience in some of the subsequent formulas.

A flow tree has asymptotic zeros η0, η1, η∞ of P at its non-compact ends; the
space of flow lines with these asymptotics is denoted T(η0, η1, η∞).

Notice that the junction point η′ lies in the intersection of (deformations of)
the stable manifolds of η1, η0 and the unstable manifold of η∞. In particular,
assuming these deformed stable and unstable manifolds are transverse, then
the possible choices for η′ form a (potentially open) manifold of dimension:

dimT(η0, η1, η∞) = Index(η∞)− Index(η0)− Index(η1).

This dimension is also the dimension of the space of flow trees, since the
junction point determines the flow tree.

Next we explain how to set-up a family of connection one-forms on the
pair-of-pants parametrized by the space of flow trees. To do this, define
family pair-of-pants data to be:

(1) a fixed almost complex structure J ,
(2) families of Hamiltonian functionsHi,η,t, i = 0, 1,∞ such that (Hi,η,t, J)

is admissible for defining the family Floer complex,
(3) satisfying H0,η,t +H1,η,t = H∞,η,t.

For each flow tree (π0, π1, π∞), one considers the families of Hamiltonians
Hi,πi(s),t defined on the “branches” of the flow tree; at the junction point,
one has three Hamiltonians related by H0,η′,t +H1,η′,t = H∞,η′,t.

To lift this to the pair-of-pants surface, we follow an ad hoc recipe. Fix the
pair-of-pants surface Σ = C \ {0, 1}, as in §3.4.4, and consider the punctured
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η′
η0

η1

η∞

Figure 8. Illustration of a flow tree.

disks D(1/3)×, 1 +D(1/3)×, and C \D(2), as cylindrical ends, parametrized
in the standard way so that the line t = 0 is aligned with the positive real
axis. The cylindrical ends around 0, 1 are parametrized by [0,∞) × R/Z
while the end around ∞ is parametrized by (−∞, 0]× R/Z.
Fix smooth functions ti : Σ → R/Z such that:

ti = t in the ith cylindrical end and ∞th cylindrical end,

and so that t0 is constant in the 1 cylindrical end while t1 is constant in
the 0 cylindrical end. The differentials mi = dti give two closed real-valued
differential forms on Σ such that:

mi = dt in the ith cylindrical end and ∞th cylindrical end;

note that m0 vanishes in the 1 cylindrical end while m1 vanishes in the 0
cylindrical end.

One more piece of data needed to lift the equation to the pair-of-pants is a
smooth map b : Σ → R satisfying b(z) = s(z) when z is in any of the three
cylindrical ends. The values of b(z) should be contained in [−1, 1] on the
complement of the cylindrical ends.

For each flow tree π = (π0, π1, π∞) define:

aπ =

{
H∞,π∞(b(z)),tdt in the ∞th cylindrical end,

H0,π0(b(z)),t0(z)m0 +H1,π1(b(z)),t1(z)m1 otherwise.

Notice that, for z outside of the cylindrical ends, πi(b(z)) = η′. This explains
our choice of having πi defined on [−1, 1] for all branches.

The key outcome of this construction is:

Lemma 44. The family of connection one-forms on T(η0, η1, η∞)× Σ×W
induced by a is smooth and has curvature bounded from above. Moreover:

a = Hi,πi(s),tdt

holds in the ith cylindrical end.

Proof. To see that a has curvature bounded from above, one only needs to
observe that, outside of a compact set one has Hi,η,t = cir, and therefore the
curvature of a vanishes outside of a compact set because the forms mi are
closed.

The statement about the form of a in the cylindrical ends follows immediately
from the construction of b, ti, and mi. □

The data of a on the family T(η0, η1, η∞)× Σ×W together with the fixed
almost complex structure J and a generic perturbation term p leads to a mod-
uli space M(η0, η1, η∞) of finite energy solutions to §3.3.3. Counting the rigid
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elements asymptotic to orbits γ0, γ1, γ∞ gives a number Nη0,η1,η∞(γ0, γ1, γ∞)
in Z/2Z. Define:

(γ0 ⊗ η0) ∗FF (γ1 ⊗ η1) :=
∑

Nη0,η1,η∞(γ0, γ1, γ∞)(γ∞ ⊗ η∞),

where the sum is over all η∞ and γ∞. As expected:

Lemma 45. The operation ∗FF is a chain map:

∗FF : CFF(P,H0,η,t, J)⊗ CFF(P,H1,η,t, J) → CFF(P,H∞,η,t, J);

the chain homotopy class of the map is independent of the choice of mi, ti,
the perturbed vector fields Pi,s, and the perturbation one-form p.

Proof. This follows standard lines; to see that it is a chain map, one inspects
the non-compact ends of the one-dimensional components of M(η0, η1, η∞)
in a manner similar to the proof of Lemma 43. Let us note that a key part
of the argument is understanding the failures of compactness in the moduli
space of flow trees T(η0, η1, η∞); the same considerations used to prove the
flow tree product on Morse cohomology is a chain map will be used here.

To see that the chain homotopy class is independent of the auxiliary choices,
one needs to find a path between two choices, then set-up a parametric
moduli space and apply the usual Floer theory arguments (see, e.g., [Abo15,
pp. 314 and pp. 341]). We only comment on why one can find a path between
two such choices: clearly one can find paths between the choices of Pi,s,
b, and p (simply by a linear interpolation). To find a path between the
choices of t0, t1 and, say, t′0, t

′
1, one can consider the circle-valued functions

ti − t′i; by construction, these functions vanish in at least two-out-of-three
cylindrical ends. Any such circle-valued function necessarily induces the
zero map π1(Σ) → π1(R/Z), and thus lifts to R. The space of R-valued
functions is convex, and hence the desired path can be taken to be a linear
interpolation between the lifts. □

As mentioned in §3.6.2, the map i : HF(Ht, J) → HF(P,Hη,t, J) is compatible
with the product structures, in the following sense:

Lemma 46. Given Hamiltonians Hi,t and Hi,η,t, i = 0, 1,∞, such that:

(1) the slope of Hi,t equals the slope of Hi,η,t

(2) (Hi,t, J) and (P,Hi,η,t, J) are admissible for defining CF and CFF
(3) H∞,t = H0,t +H1,t, and H∞,η,t = H0,η,t +H1,η,t,

then we have an equality:

∗FF ◦ (i⊗ i) = i ◦ ∗,
of maps HF(H0,t, J)⊗HF(H1,t, J) → HFF(P,H∞,η,t, J).

Proof. The argument has no surprises; one simply follows their nose. The
strategy is as follows: define a parametric moduli space Mparam admitting a
map τ to R. The one-dimensional components of Mparam have non-compact
ends of three types:

(1) ends containing sequences with τ → ∞; these ends will be asymptotic
to the configurations composing ∗FF ◦ (i⊗ i);



PARAMETRIC GROMOV WIDTH OF LIOUVILLE DOMAINS 55

(2) ends containing sequences with τ → −∞; these ends will be asymp-
totic to the configurations composing i ◦ ∗;

(3) ends which project under τ to precompact sets in R; these ends will
be asymptotic to chain homotopy terms.

The total count of ends is even, and one concludes an equation of the form:

(14) ∗FF ◦ (i⊗ i) + i ◦ ∗+ dFFK +K(d⊗ id + id⊗ d) = 0 mod 2,

as maps on the chain complexes; each of the three summands corresponds to
one type of ends. The desired result follows.

We now describe the construction of the parametric moduli space Mparam.

Let us define the space F of pairs (τ, π) where π = (π0, π1, π∞) is a flow tree
of the following type:

(1) πi : [−1,∞) → N is a flow line for −β(τ − s)Pi,s, i = 0, 1,
(2) π∞ : (−∞, 1] → N is a flow line for −β(τ − s)P∞,s,
(3) π0(0) = π1(0) = π∞(0) = η′;

here β is the standard cut-off function. Notice that πi(s) is constant for
s ≥ τ ; consequently, each element (τ, π) ∈ F is completely determined by the
parameter value τ and the junction point η′ which must be a point in the
unstable manifold of η∞ = lims→−∞ π∞(s). In particular, if we let F(η∞) be
the subset of flow trees with fixed asymptotic η∞, then F(η∞) is an open
manifold diffeomorphic to R× (unstable manifold of η∞).

Following a similar construction used in the definition of ∗FF, we obtain a
connection one form a on the family F(η∞)× Σ×W , as follows:

aτ,π :=

{
H∞,b(z)−τ,π∞(b(z)),tdt in the ∞th cylindrical end,

H0,b(z)−τ,π0(b(z)),t0(z)m0 +H1,b(z)−τ,π1(b(z)),t1(z)m1 otherwise,

where:
Hi,s,η,t = (1− β(s))Hi,η,t + β(s)Hi,t.

As in the proof of Lemma 44, this a has curvature bounded from above.

Morally, this aτ,π is a sort of hybrid between a continuation from Hi,t to
Hi,s,η,t and the family pair-of-pants product. The “continuation part” is in
the region where b(z) ≈ τ , which occurs in the positive ends i = 0, 1 when
τ is large and positive, and is in the negative end i = ∞ when τ is large
and negative. As τ → ∞, this equation “breaks” into a concatenation of the
equations defining the i-map at the 0 and 1 punctures and the family pair-
of-pants product. When τ → −∞, the equation breaks into a concatenation
of the equation defined by:

a−∞ =

{
H∞,tdt in the ∞th cylindrical end,

H0,t0(z)m0 +H1,t1(z)m1 otherwise,

(which is just the non-family pair-of-pants product and does not depend on
any flow tree) and the equation defining the i-map.

The desired moduli space Mparam is a union of components Mparam(η∞);
the ends of this component compose the terms in (14) with output in the
summand CF(H∞,η∞,t, J)⊗ Z/2Zη∞.
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This component Mparam(η∞) is defined using the above a, the fixed almost
complex structure J , and a peturbation term p on F(η∞) × Σ ×W . One
constructs p “recursively,” in the following sense: if (τ, π) is close to breaking
(either when τ → ±∞, or π approaches the boundary of the unstable
manifold of η∞), p should be determined by perturbation terms chosen
for the equations which appear in the breaking. Such recursive choices of
perturbations are a standard ingredient in Floer theory (see, e.g., [Sei08,
pp. 109]).

The analysis of the non-compact ends of Mparam(η∞) and the derivation
of the desired chain-level equation (14) follows similar lines to the proof of
Lemma 43, and we omit further details. □

3.6.4. Special Hamiltonians associated to a family of ball embeddings. In this
section, we will describe a particular choice of data H ′

η,t, η ∈ N , associated
to a lift of f to B(a,Ω)/U(n).

Recall from (11) in §3.5.1 the Hamiltonian function Hc,δ,ϵ,η which has a
minimum located at the center of the ball Bη. The parameters c, δ, ϵ are
explained in §3.5. We assume that ϵa > c(1 + δ/2) as this ensures the
evaluation map is defined; see §3.5.2.
Given a pseudogradient P on N , the family η 7→ Hc,δ,ϵ,η is not valid data for
the family Floer complex, since it is probably not constant in neighborhoods
of the zeros of P . We correct for this by modifying F as follows: simply
precompose F using a smooth map N → N which is close to the identity in
the C0 distance (associated to a Riemannian metric g) and is constant on
neighborhoods of the zeros of P . Provided the C0 distance is small enough,
the modified F is homotopic to the original F .

Fix an almost complex structure J . We define our family as:

H ′
η,t = Hc,δ,ϵ,η + κη,t,

where κη,t vanishes in the ball Bη, is supported in Ω(1 + δ), and is locally
η-independent whenever η is in a neighborhood of the zeros of P . We require
that (P,H ′

η,t, J) is admissible for defining the family Floer complex (this can
be achieved if κt is chosen generically).

It will be important when considering action filtrations on CFF(P,H ′
η,t, J)

to make the following quantity very small:

(15) max
η∈N

∥∥∂ηH ′
η,t

∥∥
g
× (max g-length of flow lines of P ).

This quantity can be made arbitrarily small by picking the pseudogradient
P to have only very short flow lines;4 we note the size of ∂ηH

′
η,t is uniformly

controlled during the construction (for each P one can chose a modification
of F so that the η derivative of H ′

c,δ,ϵ,η is bounded independently of P ).

4The construction of a pseudogradient with only very short flow lines is an exercise left
for the reader. For a similar result see [EP22, Lemma 2.6].
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3.6.5. The family BV-operator. The goal in this subsection is to construct
the operator ∆FF. At the end, we will analyze how ∆FF acts on the special
family H ′

η,t introduced in §3.6.4.

Let (P,Hη,t, J) be admissible for defining the family Floer complex. The
definition of ∆FF is straightforward; we define a connection one-form a on
the family P(η1, η0)×R/Z×Σ×W , where Σ is the cylinder, by the formula:

aπ,θ,s,t = [(1− β(s))Hπ(s),t+θ + β(s)Hπ(s),t]dt.

Using the almost complex structure J , and a generic perturbation one-form p,
we have an associated moduli space M(η1, η0) for each pair η1, η0. Counting
the rigid elements produces a map ∆FF,η0,η1 : CF(Hη0,t, J) → CF(Hη1,t, J),
and we define:

∆FF(γ0 ⊗ η0) =
∑

∆FF,η0,η1(γ0)⊗ η1,

where the sum is over all zeros η1. Similar arguments to those in §3.6.2 and
§3.6.3 prove that ∆FF is a chain map CFF(P,Hη,t, J) → CFF(P,Hη,t, J),
and the chain homotopy class is independent of the perturbation term p.

As with ∗FF, one has ∆FF ◦ i = i ◦∆ as maps HF(Ht, J) → HFF(P,Hη,t, J),
provided that Ht, Hη,t have the same slope c.

In the rest of this subsection, we will analyze how the map ∆FF acts on the
specific family H ′

η,t constructed in §3.6.4. We will show:

Proposition 47. If the length of flow lines of P are sufficiently short, and
the perturbation one-form p and the perturbation κη,t used in the definition
of H ′

η,t are sufficiently small, then the following holds: any chain:

k∑
i=1

γi ⊗ ηi

in the output of ∆FF is such that γi, i = 1, . . . , k, is not the center of Bηi.

Proof. First, we show that, if γ0 is the center of the ball Bη0 , then ∆FF(γ0⊗η0)
does not contain any term γi ⊗ ηi where ηi is the center of the ball Bηi . The
key idea is to exploit the dimension of the moduli space M(η1, η0).

Suppose there exists a solution (π, u) ∈ M(η1, η0) which joins the center
x1 of the ball Bη1 at the left end to the center x0 of the ball Bη0 at the
right end. Pick a generic section s of detC TW which is non-vanishing at
x0 and x1, and moreover is homotopic through non-vanishing sections to
the standard trivialization of detC TWx0 and detC TWx1 ; this is trivial if
x0, x1 are different points, and follows by an easy construction when x0 = x1,
provided we assume that π is short enough that the balls Bπ(s) all contain
the point x0 = x1.

As is well-known (see, e.g., [Can22]), the zero set s−1(0) is Poincaré dual to
the first Chern class of W , and the dimension of M(η1, η0) near (π, u) is:

1 + dimP(η1, η0) + 2[u] · s−1(0);

the Conley-Zehnder indices do not appear because the orbits at the center of
the ball have the same indices when they are computed using the homotopy
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class of trivializations induced by s. Thus, if we can prove that u is null-
homologous (bearing in mind that u is a topologically a sphere), then (π, u)
cannot lie in a rigid component of M(η1, η0); this gives the desired result.
The rest of the proof is dedicated to showing that u must be null-homologous
provided the perturbations are small enough, and the flow lines of the
pseudogradient are short enough.

To prove that the sphere u is null-homologous we will argue that the diameter
of each loop t 7→ u(s, t) is smaller than the injectivity radius, and hence u
bounds a three-dimensional ball. To show this, we will analyze the equation,
and estimate the energy of u in terms of p, κt and the length of flow lines.

Unpacking the definitions, one sees that u solves:

∂su+ J(u)(∂tu−Xπ(s)(u)) = Vπ,s,t(u),

where Vπ,s,t is due to the perturbation one-form p and perturbation term κ,
and Xη is the Hamiltonian vector field for Hc,δ,ϵ,η.

By construction, Vπ,s,t is compactly supported in the cylinder, and can be
taken to be as small as desired. The energy integral of u is equal to:∫

∂Hc,δ,ϵ,π(s)

∂s
(u(s, t))dsdt+ Error,

where the error term depends only on κt, p, and can be made as small as
desired. We then estimate:

|∂sHc,δ,ϵ,π(s)| ≤ max
η

|∂ηHc,δ,ϵ,η|g|π′(s)|g.

Integrating this over the cylinder, one concludes the energy is bounded by
the error plus the length of π times a uniform constant; see the discussion in
§3.6.4. Since we assume the length of π is short, we can assume the energy
of u is as small as desired.

The proof is finished by appealing to a compactness argument. Suppose we
have a sequence of solutions un of the above form, with perturbation terms
pn, κn,η,t, lengths of flow lines of Pn, and, consequently, energies all tending
to zero. Because ω is tamed by J , we obtain:

En =

∫
|∂tun −Xπn(s),t(un)|

2dsdt→ 0 as n→ ∞,

as is well-known in estimates of the Floer theory energy integrals; see, e.g.,
[Sal97, pp. 12].

By standard bubbling analysis, we can assume |∂sun| and |∂tun| are uniformly
bounded, say by C > 0.

Consider the loops γn,s(t) = un(s, t). For any s, there must be a nearby
point s′ such that:

|s− s′| ≤ E1/2
n and

∫
R/Z

|∂tγn,s′(t)−Xπn(s′),t(γn,s′(t))|
2dt ≤ E1/2

n .

By the gradient bound, we conclude that γn,s(t) lies in the CE
1/2
n neighbor-

hood of γn,s′(t). Thus it suffices to prove that, if γn is a sequence of loops
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sampled from un(s, t) such that:∫
R/Z

|∂tγn(t)−Xηn,t(γn(t))|2dt ≤ E1/2
n ,

for some ηn ∈ N , then γn(t) has a subsequence which converges uniformly
to a point; this will imply all loops sampled from u have a small enough
diameter (for n sufficiently large).

By standard bootstrapping for ODEs, similar to the argument in [BC24,
§2.2.2], it follows that a subsequence γn(t) converges in the C1 topology to
an orbit of Xη,t for some η ∈ N . The orbits of Xη,t are either constants,
or have action uniformly far from the action of the center of the ball (see
Lemma 38). Assume that γn does not converge to a point; it then follows
that γn(t) has action far from the action of the center of the ball as n→ ∞.
Since γn(t) was sampled from un(s, t), and un joins two centers of balls, we
conclude that un must have a minimum positive amount of energy (using the
well-known principle that the energy integral governs the change in action;
the presence of the perturbation terms in the energy integral will not ruin
the application of this principle). This minimum amount of energy of un
contradicts our assumption, and the proof is complete in this case.

The second thing to show is that ∆FF(γ0 ⊗ η0) does not contain any term
γi ⊗ ηi where γi is the center of Bηi provided γ0 is not the center of Bη0 .
This case is much easier (for sufficiently small perturbations and lengths of
flow lines), since the action of the center has the lowest action among all
orbits, and ∆FF increases actions (up to an error which becomes as small as
desired as the perturbations and lengths of flow lines tend to zero). □

3.6.6. Evaluation map associated to a family of ball embeddings. In this
section we construct a map eFF : HFF(P,Hη,t, J) → Z/2Z using a lift of f
to B(a,Ω)/U(n) in a similar way to §3.5.
We assume, as in §3.5, that ϵa > c(1 + δ/2), and that the family Hη,t has
slope at most c.

Consider the family P′(η0) of flow lines π of −β(s)P which are asymptotic
at the positive end to the zero η0. Each π ∈ P′(η0) is determined by its
terminal point η′ = π(0), and the set of such terminal points is the stable
manifold of η0.

Define a connection one-form a on P′(η0)× Σ×W where Σ is the cylinder
by the equation:

aπ,s,t = (1− β(s))Hc,δ,ϵ,π(s)dt+ β(s)Hπ(s),tdt;

in words, a is a continuation data from Hη0,t to Hc,δ,ϵ,η′ where η
′ = π(0).

Note that, as in §3.5.2, this connection one-form has a varying asymptotic
at the left end, and so some care is needed when considering the associated
moduli space.

Fixing a generic perturbation term p and an almost complex structure J , we
consider the moduli space M(η0) of solutions (π, u) whose left asymptotic is
the central orbit of Hc,δ,ϵ,π(0). This moduli space has similar compactness
and regularity properties as if the asymptotics of a were fixed, essentially
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because the left asymptotic orbit is always non-degenerate (see the discussion
in §3.5.2).
Define:

eFF(γ0 ⊗ η0) :=
∑

(rigid elements in M(η0) whose right asymptotic is γ0).

The main structural result is:

Lemma 48. The map eFF : CFF(P,Hη,t, J) → Z/2Z is a chain map, and the
chain homotopy class is independent of the generic perturbation term p.

Proof. The argument is the same as in §3.5.2, with the modifications needed
to work with family Floer cohomology used in, e.g., §3.6.2. □

We now show that eFF is compatible with the i-map.

Lemma 49. Fix Ht so that (Ht, J) is admissible for defining the Floer complex,
the same slope as Hη,t, so that the i-map CF(Ht, J) → CFF(P,Hη,t, J) is
defined. Then:

eFF ◦ i = e

as maps HF(Ht, J) → Z/2Z.

Proof. The key is to consider the family P′′ of pairs (R, π) where π is a flow
line of the vector field: −β(s)β(R − s)P. Note that each such π is locally
constant outside of the interval [0, R], and moreover π is determined by the
point π(0) which is an arbitrary point of N . Thus P′′ is diffeomorphic to the
product R×N , via the map (R, π) 7→ (R, π(0)).

Define a connection one-form a on the family P′′ × Σ×W by:

aπ,s,t = [(1− β(s))Hc,δ,ϵ,π(s) + β(s)(β(R− s)Hπ(s),t + (1− β(R− s))Ht)]dt;

It is important to notice that, for s ≤ R−1, aπ,s,t agrees with the connection
1-form used to define eFF, and on s ≥ 1, aπ,s,t agrees with the R-translated
version of the connection 1-form used to define i.

Fixing a perturbation term p, we can therefore consider the one-dimensional
component of the moduli space M consisting of triples (R, π, u).

Claim: for each generic number R0, the fiber M(R0) of triples (R0, π, u) is
a zero-dimensional manifold, and counting the points in M(R0) defines a
chain map CF(Ht, J) → Z/2Z. The chain homotopy class of this map is
independent of R0.

The claim is standard Floer theory, following similar arguments used in
§3.5.2, and we omit further discussion.

The two crucial observations are that:

(1) M(R0) is precisely the moduli space used to define e, provided R0 ≤ 0,
(2) as R0 → +∞, M(R0) “breaks” into configurations of rigid solutions

((π−, u−), (π+, u+)), where π− ∈ P′(η0) and π+ ∈ P(η0), and where
(π−, u−) contributes to eFF and (π+, u+) contributes to i.

In this manner, we conclude that e = eFF ◦ i, up to chain homotopy. One
point which merits comment is that one should pick p to be compatible with
the breaking as R0 → ∞. This completes the proof. □
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We end this subsection with an analysis of how eFF acts on CFF(P,H ′
η,t, J)

for the special family H ′
η,t constructed in §3.6.4.

Proposition 50. If the length of flow lines of P are sufficiently short, and
the perturbation one-form p and the perturbation κη,t used in the definition
of H ′

η,t are sufficiently small, then the following holds:

eFF(
k∑

i=1

γi ⊗ ηi) = 0

provided each γi is not the center of Bηi . In the definition of eFF we use the
same family of ball embeddings as is used in the family H ′

η,t.

Proof. The argument is similar (and easier) than Proposition 47. One
estimates that the energy of any solution u appearing in the moduli space
used to define eFF is as small as desired; for this, it is important that the
same family Hc,δ,ϵ,η is used in the construction of H ′

η,t and in eFF. Because
the energy governs the action difference, any solution u joins asymptotic
orbits γ−, γ+ where the action of γ− is larger than the action of γ+ up to an
arbitrarily small error.

This error can be taken to be smaller than the distance between the action at
the center of the ball and the action of any other orbit (see Lemma 38). In
particular, since the center of the ball has the lowest action, we conclude that
the only possible solutions contributing to eFF must be asymptotic at their
positive end to γ0 ⊗ η0 where γ0 is the center of the ball Bη0 , as desired. □

3.6.7. The family action filtration. In Propositions 47 and 50 we appealed to
the actions of orbits in the context of family Floer cohomology, in the context
when the flow lines of the pseudogradient P are short. In this subsection, we
will formalize such considerations by introducing special action filtrations on
the family Floer complex depending on a parameter ε > 0.

For ε > 0, define the ε-action of γ0 ⊗ η0 ∈ CFF(P,Hη,t, J) to be the number:

Aε(P,Hη,t; γ0 ⊗ η0) := εIndex(P ; η0) +

∫
Hη0,t(γ0(t))dt−

∫
γ∗0λ,

where, recall, λ is the Liouville form on W . One defines the ε-action of a
chain in CFF(P,Hη,t, J) to be the minimum action of a generator which
appears in the chain.

Lemma 51. The differential dFF increases the ε-action provided:

max
η,t,u

|∂ηHη,t(u)|gdt×max{g-length of a flow line of P} < ε,

for some Riemannian metric g on N .

Proof. Recall that the differential counts R-families of finite-energy solutions
(π, u) where π ∈ P(η1, η0) is a flow line of −P and u : R× R/Z →W solves:

∂su+ J(u)(∂tu−Xπ(s),t(u)) = 0,

where Xη,t is the Hamiltonian vector field for Hη,t. The space of such
solutions admits an R-action by translating π and u, and the differential
counts the rigid elements in the quotient by this R-action.
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Unpacking the definition from §3.3.5, one sees the energy of u is:

E(u) :=

∫
ω(∂su, ∂tu−Xπ(s),t(u))dsdt,

which is non-negative and can be computed as:

E(u) = ω(u) +

∫ 1

0
Hη1,t(γ1(t))dt−

∫ 1

0
Hη0,t(γ0(t))dt+

∫
∂sHπ(s),t(u)dsdt,

where γi(t) are the asymptotic orbits of u. If η1 = η0, then π
′(s) = 0 and

∂sHπ(s),t = 0. Otherwise, the last term can be estimated:∫
∂sHπ(s),t(u)dsdt ≤ max

η,t,u
|∂ηHη,t(u)|g

∫
R
|π′(s)|gds ≤ ε.

Using ω = dλ, one obtains:

0 ≤ Aε(γ1 ⊗ η1)−Aε(γ0 ⊗ η0);

this is proved in two cases: first, if η1 = η0, and, second, if η1 ̸= η0, in which
case their index difference is at least 1. □

Thus, for ε satisfying the hypotheses of Lemma 51, (CFF(P,Ht, J), dFF, Aε)
is a (cohomologically) filtered complex, and so it makes sense to speak
about the filtration level of a homology class (as the maximum action of all
representative cycles).

Next we will show that Aε is compatible with ∆FF up to a bounded error.

Lemma 52. For any homology class α ∈ HFF(P,Hη,t, J), it holds that:

−
∫

max
η,u

|Hη,t(u)−Hη,t+θ(u)|dt ≤ Aε(∆FF(α))−Aε(α),

provided that ε satisfies the hypotheses of Lemma 51.

Remark. In particular, if Hη,t is close to being autonomous (for each η), then
∆FF is close to being action non-decreasing.

Proof. The argument is similar to Lemma 51. Recall that ∆FF counts the
rigid solutions (π, u) where π ∈ P(η1, η0) and u solves a perturbed version of
the equation:

(16) ∂su+ J(u)(∂tu−Xs,t(u)) = 0

where Xs,t is the Hamiltonian vector field for (1−β(s))Hπ(s),t+θ+β(s)Hπ(s),t.
The energy of solutions for the unperturbed equation can be estimated as:

E(u) ≤
∫ 1

0
max
η,u

|Hη,t(u)−Hη,t+θ(u)|dt+max
u,η,t

|∂ηHη,t|g
∫
R
|π′(s)|g

+ ω(u) +

∫ 1

0
Hη1,t+θ(γ1(t+ θ))dt−

∫ 1

0
Hη0,t(γ0(t))dt.

The proof uses the standard energy estimates for continuation map type
equation like (16), similarly to Lemma 51.

If η1 = η0, then π
′(s) = 0; otherwise the index difference is at least 1. In

both cases, one rearranges to obtain the desired result.
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In general, one needs to work with the perturbed equation p; however, since
the chain homotopy class is independent of the perturbation, one can prove
the estimate with small error terms due to the perturbation p, and taking a
limit as p → 0 will reduce to the above unperturbed analysis; see also the
proof of Lemma 53 for further details on this step of the argument. □

To conclude this section, we show that ∗FF respects the ε-action filtration,
up to an error depending on ε.

Lemma 53. Suppose that ε satisfies the hypotheses of Lemma 51. Then, for
any two homology classes αi ∈ HFF(P,Hi,η,t, J), i = 0, 1, we have:

−(3+dimN)ε−C max
η,t0,t1

|{H0,η,t0 , H1,η,t1}| ≤ Aε(α0∗FFα1)−Aε(α0)−Aε(α1),

where C is a uniform constant depending only on the pair-of-pants surface;
here α0 ∗FF α1 ∈ HFF(P,H∞,η,t, J) and H∞,η,t = H0,η,t +H1,η,t is assumed
to be admissible for defining the family Floer complex as required in the
definition of ∗FF, and {−,−} is the Poisson bracket.

Proof. Recall from §3.6.3 that the product is defined by counting rigid
solutions to the perturbed equation determined by the connection one-form:

a =

{
Hi,πi(s),tdt in the i cylindrical end, i = 0, 1,∞,

H0,η′,t0(z)m0 +H1,η′,t1(z)m1 otherwise,

where (π0, π1, π∞) is a flow tree, η′ is the junction point of the flow tree,
and the circle valued functions ti, and their differentials mi = dti are as in
§3.6.3. The branches of the flow tree are flow lines for perturbations of the
pseudogradient.

Thus there are two relevant perturbations which play a role in the definition
of the pair-of-pants product:

(1) the usual perturbation term p,
(2) the perturbations used to define the flow tree.

For each solution (π, u) to the family pair-of-pants equation, ideally, we
would like to show that:

(17) −(3 + dimN)ε ≤ Aε(γ∞ ⊗ η∞)−Aε(γ0 ⊗ η0)−Aε(γ1 ⊗ η1),

where γi, ηi, i = 0, 1,∞ are the asymptotics. We simplify our task as follows:
it suffices to prove (17) when the perturbations (1) and (2) are turned off.
To see why this is sufficient, recall that the chain homotopy class of the
pair-of-pants is independent of the perturbation used. Thus we can take a
sequence of solutions (πn, un) solving the equation with perturbations (1)
and (2) depending on n which tend to zero.

By the usual compactness theory for solutions to Floer’s equation (see §3.3.6)
and standard compactness results for ODEs, one concludes that (πn, un) has
a subsequence which converges to a configuration consisting of a central limit
(π∞, u∞) solving the unperturbed pair-of-pants equation, together with some
number of cylinders at the punctures solving the equation for dFF; see the
illustration in Figure 9. Since we have already shown that dFF increases the
Aε-action in Lemma 51, it is sufficient to prove (17) holds for solutions of



64 FILIP BROĆIĆ AND DYLAN CANT

the unperturbed equation; this completes the explanation of why we can
work only with the unperturbed equation.

Σ0

ℓ0(t) γ0(t)

ℓ1(t) γ1(t)

ℓ∞(t)γ∞(t)

Figure 9. Illustration of the pair-of-pants and limit (cylin-
ders for dFF break off) when perturbations are turned off

Referring to the notation in Figure 9, we claim the following:

(18)

A0(γ∞ ⊗ η∞) ≥ A(H∞,η′,t; ℓ∞(t))− ε

A(H0,η′,t; ℓ0(t)) ≥ A0(γ0 ⊗ η0)− ε

A(H1,η′,t; ℓ1(t)) ≥ A0(γ1 ⊗ η1)− ε

A(H∞,η′,t; ℓ∞(t)) ≥ A(H0,η′,t; ℓ0(t)) +A(H1,η′,t; ℓ1(t)),

where A0(η ⊗ γ) is simply the action functional considered in §3.6.7 with ε
set to zero, and:

A(Hi,η′,t; ℓ(t)) =

∫
Hi,η′,t(ℓ(t))dt−

∫
ℓ∗λ,

where η′ is the junction point of the limit flow tree.

Combining everything, we conclude that:

A0(γ∞ ⊗ η∞) + 3ε ≥ A0(γ0 ⊗ η0) +A0(γ1 ⊗ η1).

Finally we observe that, along any unperturbed flow tree we have:

Index(η∞) ≥ max{Index(η1), Index(η0)},
and hence εIndex(η∞) + ε dimN ≥ εIndex(η0) + εIndex(η1); this implies
(17), as desired.

It remains only to verify (18). The first three lines of (18) follow from the
same exact argument as Lemma 51. The rest of the proof is showing the last
line; it will ultimately follow from a computation of the curvature of a on
the central region Σ0 of the pair-of-pants shown in Figure 9.

By Lemma 29, it is sufficient to bound the intergral of the connection
two-form r associated to a over the central region Σ0. Recall that:

a = Hx,ydx+Kx,ydy =⇒ r = (∂xKx,y − ∂yHx,y + ω(Xx,y, Yx,y)) dx ∧ dy,

where Xs,t, Ys,t are the Hamiltonian vector fields for Hs,t,Ks,t, respectively.
In our case, above the central region, we have:

a = H0,η′,t0(z)m0 +H1,η′,t1(z)m1.

We claim that:

(19) r = ω(X0,η′,t0(z), X1,η′,t1(z))m0 ∧m1.
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To compute this, we first observe that ∂xKx,y − ∂yHx,y is linear, and hence
it suffices to prove it vanishes for each Hi,η′,ti(z)mi separately. Write ti = fi,
Hi,η′,ti(z) = Gi,fi(z) and mi = dfi. Then, in conformal coordinates x+ iy,

G
i,fi(z)dfi = Gi,fi(z)∂xfidx+Gi,fi(z)∂yfidy,

and a short computation shows the ∂xKx,y −∂yHx,y term vanishes. Thus the
only term which contributes to r is ω(Xx,y, Yx,y)dx ∧ dy, which expands to:

ω(V0,f0(z)∂xf0 + V1,f1(z)∂xf1, V0,f0∂yf0 + V1,f1(z)∂yf1)dx ∧ dy,

where Vi,f is the Hamiltonian vector field of Gi,f . Simplifying, one obtains:

ω(V0,f0(z), V1,f1(z))(∂xf0∂yf1 − ∂yf0∂xf1)dx ∧ dy,

which equals (19), as desired. Finally, using the notation v(z) = (z, u(z))
from Lemma 29, we estimate:∫

v∗rσ ≤ max
η,t0,t1

|{H0,η,t0 , H1,η,t1}|
∫
Σ0

|m0 ∧m1|,

which gives the desired result. □

3.6.8. Proof of Theorem 7. Suppose that Hc,δ,ϵ,η is the family as constructed
in §3.5.1, using the lift of f to B(a,Ω)/U(n). The proof of Theorem 7 is an
argument by contradiction: we assume a > c, and then derive a contradiction.

As in the hypotheses of Theorem 7, suppose that there are classes ζi ∈ Vci ,
i = 1, 2, where ci > 0, such that:

PSS(β) = ∆(ζ1) ∗ ζ2 in Vc,

where c = c1 + c2, and where β has non-zero homological intersection with f .
Without loss of generality, we can suppose that c2 > 0. Since a > c, we can
use the evaluation map e and §3.5.3 to conclude:

1 = e(∆(ζ1) ∗ ζ2).
Let θi = ci/c, so that θ1+ θ2 = 1. Given a pseudogradient P on N , construct
the family H ′

η,t as a small perturbation of Hc,δ,ϵ,η as in §3.6.4. Let:

Hi,η,t = θiH
′
η,t, for i = 1, 2,

Fix a small constant ε > 0, and pick the perturbation term used in the
construction of H ′

η,t so that:

(1) H1,η,t, H2,η,t, and H1,η,t +H2,η,t are all admissible for defining the
family Floer complex,

(2) maxη,t0,t1 |{H ′
η,t0 , H

′
η,t1}| < ε/C, where C is from Lemma 53.

(3) the action of any non-central orbit appearing in H1,η,t is non-negative.

Lemma 38 implies that we can assume that:

(4) the action of any orbit for H2,η,t is at least θ2(c− a)− ε.

By picking the pseudogradient P to have short enough flow lines, we can
also suppose that:

(5) maxη,t |∂ηH ′
η,t|g ×max{g-length of flow lines for P} < ε.
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(6) the conclusion of Proposition 47 holds for H1,η,t; here we note that
H1,η,t is a perturbation of θ1Hc,δ,ϵ,η = Hθ1c,δ,θ1ϵ,η, and Proposition 47
applies.

With this established, we claim:

Lemma 54. For any classes ζi ∈ HFF(P,Hi,η,t, J), we have that ε satisfies
the hypotheses of Lemma 51 for each Hi,η,t, so Aε is valid cohomological
filtration, and:

Aε(∆FF(ζ1) ∗FF ζ2) ≥ θ2(c− a)− (5 + dimN)ε.

Proof. The first statement follows from (5). The next step is to use Proposi-
tion 47 and (6) to conclude that:

∆FF(ζ1) is represented by cycles not containing any central orbit.

In particular, using (3), we conclude:

Aε(∆FF(ζ1)) ≥ 0.

Use this, Lemma 53, and (2), to conclude:

Aε(∆FF(ζ1) ∗FF ζ2) ≥ Aε(∆FF(ζ1)) +Aε(ζ2)− (4 + dimN)ε,

for j = 1, . . . , k − 1. Then use (3) and (4) to conclude:

Aε(∆FF(ζ1) ∗FF ζ2) ≥ θ2(c− a)− (5 + dimN)ε,

as desired. □

If the lengths of the flow lines are short enough, then Proposition 50 says
eFF : HFF(P,H ′

η,t, J) → Z/2Z vanishes on classes which are represented by
cycles which contain only non-central orbits. The discussion at the start of
this subsection, together with the compatibility of eFF,∆FF, ∗FF and their
non-family analogues implies:

eFF(∆FF(ζ1) ∗FF ζ2) = 1.

The contradiction leading to the proof of Theorem 7 will therefore be com-
pleted provided we can prove:

(20) ∆FF(ζ1) ∗FF ζ2 ∈ HFF(P,H ′
η,t, J)

is represented by a cycle which contains only non-central orbits. This fact
follows from the action estimate in Lemma 54, provided ε is small enough.
Indeed, Lemma 38 implies that the central orbit has action:

c+ cδ/2− ϵa.

Picking ϵ close enough to 1, δ small enough, and picking ε small enough, we
can use the fixed negative number c− a to ensure:

Aε(any central orbit) ≤ c+ cδ/2− ϵa+ ε dimN < θ2(c− a)− (5 + dimN)ε,

where we use θ2 < 1 (since θ1 > 0 and θ1 + θ2 = 1). It therefore follows that
(20) must be represented by a cycle which does not contain central orbits.
Thus eFF must vanish on it, providing the desired contradiction, proving
Theorem 7. □
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3.6.9. Proof of Theorem 8. The argument is essentially exactly the same.
The first difference is that one defines:

Hc,δ,ϵ,η = Gc,δ +K + ϵDη,

as a minor replacement of the functions defined in §3.5.1.
The second difference f is now assumed to lift to B(a, U)/U(n), where U is
the well of the Hofer-Zehnder admissible function K.

Everything else follows the same argument. This works because K is indepen-
dent of c, δ, ϵ, η (so many terms involving derivatives of Hc,δ,ϵ,η with respect
to its parameters vanish), and K only has constant orbits and U is contained
in the set where K = −A = minK (this is used in Lemma 38 which estimates
the actions). Because of the Hofer-Zehnder admissible function K, the action
of the center of the ball is c + cδ/2 − A − ϵa. Thereby one concludes the
evaluation map is defined when c < A+ a. □

3.6.10. Proof of Theorem 13. The argument is very similar to the proof of
Theorem 7, and in fact a bit easier. Since ζ1 is represented by a cycle whose
orbits are all non-contractible, ζ1 is represented by a cycle which does not
contain the central orbit. The proof then follows the same lines as §3.6.8.
The details are left to the reader. □

4. From string topology to Floer cohomology

The goal of this section is to prove Theorem 11 on the comparison between
string topology and Floer cohomology. We specialize to the case when
W = T ∗M and Ω is a fiberwise starshaped domain.

Much of the arguments in this section are straightforward modifications of
the arguments of [AS10, Abo15] from their Morse theory approach to our
bordism approach. The exception is the proof that the product structures are
identified, as we instead give a seemingly novel adiabatic gluing argument.

Recall from §1.3 the monoid Z(Λc) of smooth families of loops:

A : P × R/Z →M,

such that P is a compact finite dimensional manifold, and ℓΩ(A(x,−)) < c
holds for all x ∈ P , where:

ℓΩ(q) =

∫ 1

0
max{

〈
p, q′(t)

〉
: p ∈ Ω ∩ T ∗Mq(t)}dt

is the length of the loop q as measured by Ω. As in §1.3, this leads to the
bordism group H(Λc) as a quotient of Z(Λc). Then c 7→ H(Λc) has the
structure of a persistence module on the positive real line.

As explained in §2.1, there are three relevant structures on this persistence
module:

(1) the BV-operator ∆ : H(Λc) → H(Λc),
(2) the inclusion of the constant loops i : H∗(W ) → H(Λc), and,
(3) the Chas-Sullivan product ∗ : H(Λc1)⊗H(Λc2) → H(Λc1+c2).
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In the first subsection §4.1, we will explain the definition of a morphism of
persistence modules Θ : H(Λc) → Vc; afterwards, we show Θ intertwines
∆, i, ∗ with the analogous structures on the Floer cohomology persistence
module.

4.1. Definition of the Θ-morphism. The definition of the Θ-morphism follows
the strategy of [AS06, APS08, AS10, Abo15, CHO23, BCS25], and uses
moduli spaces with moving Lagrangian boundary conditions similar to the
ones considered in [Cie94, BC24].

4.1.1. Θ-data. Let (Ht, J) be a Hamiltonian system admissible for defining
the Floer complex, and let A : P × R/Z →M be a family of loops in Z(Λc).

For such inputs (Ht, J) and A, we define Θ-data to be:

(1) a Hamiltonian connection a on P ×Σ×W where Σ is the half-infinite
cylinder (−∞, 0]×R/Z, so ax,s,t = Kx,s,tds+Hx,s,t, where Kx,s,t = 0
and Hx,s,t = Ht for s ≤ s0,

(2) a smooth family of ω-tame and Liouville equivariant almost complex
structures Jp,s,t on P × Σ×W so Jp,s,t = J when s ≤ −s0,

which satisfies the following properties:

(3) Hx,s,t = cx,s,tr and Kx,s,t = bx,s,tr for r ≥ r0,
(4) ∂scx,s,t ≤ ∂tbx,s,t,
(5) cx,0,t ≥ max{⟨p, q′(t)⟩ : p ∈ Ω ∩ T ∗Mq(t) where q(t) = A(x, t)}, out-

side of r ≥ r0.

Similarly to §3.4.2, condition (4) is used when showing that the curvature of
a is bounded from above, which is used in proving a priori energy estimates.
Condition (5) is also used in the a priori energy estimate; see §4.1.2.
Let us note that (5) implies:∫

cx,0,tdt ≥ ℓΩ(q) for each q = A(x,−),

and so it is necessary that the slope of Ht is at least the ℓΩ-length of all
loops appearing in the family A.

Lemma 55. If the slope of Ht is at least the c, where A ∈ Z(Λc), then the
space of Θ-data for (Ht, J) and A is weakly contractible.

Proof. The argument is exactly as in Lemma 33; one can take convex combi-
nations between any the connection one forms, and use the contractibility
of the space of almost complex structures, to prove the space of Θ-data is
either empty or weakly contractible. To prove it is non-empty, one picks a
family of smooth functions Hx,0,t so that Hx,0,t = cx,0,tr for r ≥ r0, and:

cx,0,t ≥ max{
〈
p, q′(t)

〉
: p ∈ Ω ∩ T ∗Mq(t) where q(t) = A(x, t)}.

Moreover, we can assume that:

(21)

∫
cx,0,tdt ≤ c ≤ slope of Ht for each x ∈ P.
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Similarly to the proof of Lemma 33, define:
Hx,s,t = (1− β(s+ 1))Ht + β(s+ 1)Hx,0,t,

Kx,s,t =

∫ t

0
∂sHx,s,τdτ − t∂s

∫ 1

0
Hx,s,τdτ.

Then (21) implies condition (4). Condition (5) holds by construction, and
the other properties are obvious. □

4.1.2. A priori energy estimate. The Θ-map will be defined as follows: given
Θ-data (a, J), we will pick a generic perturbation one-form p on P ×Σ×W ,
which we assume vanishes above s = 0 and above s ≤ −s0. Then we will
count the rigid solutions (x, u) to §3.3.3 satisfying the boundary conditions:

(22) u(0, t) ∈ T ∗Mq(t) where q(t) = A(x, t).

In this subsection, we show such solutions satisfy a priori energy bound.
Similar energy estimates are proved in [BC24, BCS25].

We will use the general energy estimate Lemma 30. First, (4) implies a has
curvature bounded from above. Therefore Lemma 31 implies a, p also has
curvature bounded from above. Thus, the a priori energy bound follows
from:

Lemma 56. Let a, J be Θ-data, and let p be a perturbation one-form as above.
There is a uniform bound:

sup{ω(u)−
∫
∂Σ
v∗ax} <∞

where the supremum is over v(z) = (z, u(z)) where (x, u) is a finite energy
solution of §3.3.3 for (P × Σ×W, a, p, J) with boundary conditions (22).

Proof. Unpacking the definitions, one sees that:∫
∂Σ
v∗ax =

∫ 1

0
Hx,0,t(u(0, t))dt,

and:

ω(u) =

∫ 1

0
λu(0,t)(∂tu(0, t))dt−

∫
γ∗λ,

where γ is the asymptotic orbit of u. Since there are only finitely many
orbits, it is sufficient to bound:

I =

∫ 1

0
λu(0,t)(∂tu(0, t))−Hx,0,t(u(0, t))dt,

as can be verified by inspecting the terms in the general estimate Lemma 30.

As we are working with the cotangent bundleW = T ∗M , we use the canonical
Liouville form λ = pdq; substituting this, and using the boundary conditions
for u, the above integral becomes:

I =

∫ 1

0

〈
p(t), q′(t)

〉
−Hx,0,t(u(0, t))dt,

where q(t) = A(x, t) and u(0, t) = (p(t), q(t)) considered as section of T ∗M .
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Write r(t) = r(u(0, t)). Then:〈
p(t), q′(t)

〉
≤ max{

〈
p, q′(t)

〉
: p ∈ Ω ∩ T ∗Mq(t)}r(t),

as can be proved by rescaling in the fiber direction until p ∈ ∂Ω, and then
using the fact the above estimate is invariant under rescaling in the fiber
direction. Thus:

I ≤
∫ 1

0
max{

〈
p, q′(t)

〉
: p ∈ Ω ∩ T ∗Mq(t)}r(t)−Hx,0,t(u(0, t))dt.

Because Θ-data satisfies property (5), the function:

F (t, w) = max{
〈
p, q′(t)

〉
: p ∈ Ω ∩ T ∗Mq(t)}r(w)−Hx,0,t(w)

is non-positive for r(w) ≥ r0. Thus F attains a finite maximum Fmax over
the space of t, w, x, independently of u. Then I ≤ Fmax holds independently
of the solution (x, u), completing the proof. □

4.1.3. Definition of Θ. Let (Ht, J) be admissible for defining CF(Ht, J), let
A : P × R/Z →M be a family of loops in Z(Λc), and let (a, J) be Θ-data.
We assume throughout this subsection that the slope of Ht is at least c.

For a generic perturbation term p on P × Σ×W , consider the moduli space
M of solutions to §3.3.3, satisfying the boundary conditions (22). Let M0 be
the rigid component of M.

We define:

Θ(A) :=
∑
γ

#{(x, u) ∈ M0 : u is asymptotic to γ}γ.

By the above a priori energy estimate, this sum is finite. The key structural
result is:

Lemma 57. For each A ∈ Z(Λc), Θ(A) is a cycle in the Floer complex.
Moreover, the homology class of Θ(A) in HF(Ht, J) is independent of the
choice of Θ-data, perturbation one-form p, and is independent of the bordism
class of A. The resulting map:

Θ : H(Λc) → HF(Ht, J)

is a map of Z/2Z-vector spaces.

Proof. To see that Θ(A) is a cycle, one considers the ends of the 1-dimensional
component M1 ⊂ M; one shows that the number of ends of the component
of M1 asymptotic to γ equals the coefficient in front of γ appearing in the
composition d(Θ(A)). Thus d(Θ(A)) = 0 as we count modulo two.

To see that the chain homotopy class of Θ(A) is independent of the Θ-data,
or perturbation one-form p, one appeals to the usual parametric moduli
space argument; see, e.g., the discussion at the end of §3.4.2.
A bit care is needed to prove the chain homotopy class of Θ(A) is independent
of the bordism class of A. Nonetheless, the argument is still based on a
parametric moduli space. Given a cobordism C : Q× R/Z →M between A
and A′, one can consider Θ-data for C; this entails a connection one-form a
and almost complex structure on Q×Σ×W satisfying properties (1) through
(5), the only difference being that Q is a manifold with boundary rather than
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a closed manifold. Invoking another generic perturbation term p, this data
leads to a parametric moduli space Mparam of solutions (y, u) where y ∈ Q.
We note that Θ-data for C exists since we assume the cobordism happens
within Z(Λc), and the slope of Ht is at least c, by assumption.

For generic perturbation term, the 1-dimensional component Mparam
1 has two

boundary components:

∂Mparam
1 = {(y, u) : y ∈ P or y ∈ P ′},

where P ⊔ P ′ = ∂Q. These solutions on the boundary are rigid when y
is restricted to variations tangent to ∂Q. A moment’s reflection therefore
reveals that:

Θ(A)−Θ(A′) =
∑

#{(y, u) ∈ ∂Mparam
1 : u is asymptotic to γ}γ.

If Mparam
1 were compact, then we would be done, as the number of boundary

points of a compact manifold with boundary is even. However, Mparam
1

can have non-compact components. Nonetheless, the non-compact ends of
M

param
1 can be understood via Floer breaking/gluing; the usual theory shows

that:

d(
∑

#{(y, u) ∈ M
param
0 : u is asymptotic to γ}γ) = dK =

∑
Nγ′γ′

where Nγ′ is the number of non-compact ends of the component of Mparam
1

consisting of those (y, u) where u is asymptotic to γ′. Thus one proves:

Θ(A)−Θ(A′) = dK,

as desired.

Finally, to see that Θ is a vector space map, it suffices to prove that Θ
respects addition. Since addition in H(Λc) is given by disjoint union, and
we can pick the Θ-data independently for each component of the parameter
space P , it follows easily that Θ(A+A′) = Θ(A) + Θ(A′). □

4.1.4. Compatibility with continuation maps. To prove that Θ induces a
map of persistence modules H(Λc) → Vc, it is necessary to show that Θ is
compatible with continuation maps between the Floer cohomologies.

Lemma 58. If c : HF(H0,t, J0) → HF(H1,t, J1) is a continuation map, as in
§3.4.2, and the slope of (H0,t, J0) at at least c, then:

c ◦Θ0 = Θ1

as maps H(Λc) → HF(H1,t, J1), where Θi : H(Λc) → HF(Hi,t, Ji) is the
Θ-map constructed in §4.1.3.

Proof. This follows easily from the construction of c and Θi, and is left to
the reader (see also the arguments in [AS10, Abo15]). □

4.2. BV-operators. This subsection is concerned with showing that Θ is
compatible with the BV-operator on H(Λc) constructed in §2.1.2 and the
BV-operator on HF(Ht, J) constructed in §3.4.5. This is part of the content
of Theorem 11.
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Lemma 59. If (Ht, J) is admissible for defining the Floer complex, and has
slope at least c, then:

∆ ◦Θ = Θ ◦∆,
as maps H(Λc) → HF(Ht, J).

Proof. The argument has no surprises, and follows similar lines to the argu-
ments in [AS10, Abo15]. We leave the details to the reader. □

4.3. Inclusion of the constant loops and PSS. In this subsection, we argue
that Θ intertwines the inclusion of constant loops map i : H∗(W ) → H(Λc)
with PSS : H∗(W ) → HF(Ht, J). We assume that Ht, J has slope at least
c > 0.

Lemma 60. Suppose that β ∈ H∗(W ). Then PSS(β) = Θ(i(β)) as homology
classes in HF(Ht, J), where i(β) is considered as an element of H(Λc).

Proof. The first step in the proof is to appeal to the proof of Lemma 16;
there it is shown that β is represented by the map C : S → T ∗M in the fiber
product diagram:

S T ∗M

P M,

C

f

where f : P →M is a smooth map and P is a compact manifold. One can
think of C as the collection of cotangent fibers living over the map f .

As in Lemma 16, it holds that i(β) is represented by:

A : P × R/Z →M given by A(x, t) = f(x),

i.e., i(β) is represented by a cycle of constant loops.

Let (aPSS, J) be PSS-data, so it is defined on R×R/Z×W . Let us suppose
that aPSSs,t = 0 for s ≥ s0. For each R > s0, define:

aR,x,s,t = aPSSs+R,t;

note that aR,x,s,t is Θ-data for A(x, t) = f(x), since aR,x,0,t = 0, for each R.

One can think of aR,x,s,t as a connection one-form on the family:

(s0,∞)× P × (−∞, 0]× R/Z,
and one can introduce a compatible perturbation one-form pR,x,s,t supported
in the region where s ≤ −R, which is sufficient to ensure transversality.

This leads to the parametric moduli space M of solutions (R, x, u), satisfying
the boundary conditions:

u(0, t) ∈ T ∗Mf(x),

which admits a smooth map (R, x, u) 7→ R ∈ (s0,∞). Let us denote the fiber
over R0 ∈ (s0,∞) by M(R0). Since aR0,x,s,t is Θ-data for each R0, the count
of elements rigid elements of M(R0) represents Θ(i(β)).

The rigid elements of M(R0) live in the one-dimensional component of M.
Let us note that M has three kinds of non-compact ends:



PARAMETRIC GROMOV WIDTH OF LIOUVILLE DOMAINS 73

(1) ends containing sequences (Rn, xn, un) where Rn → s0; we will ignore
these ends,

(2) ends containing sequences (Rn, xn, un) where Rn converges in (s0,∞);
as is well-understood, these ends converge to configurations contribut-
ing to dK where K counts the rigid elements of M; we will also ignore
these ends,

(3) ends containing sequences (Rn, xn, un) where Rn converges to ∞.

A bit of thought shows that, the count of ends of type (3), where the left
asymptotic of un is γ, defines a coefficient Nγ , and

∑
Nγγ represents Θ(i(β));

the argument is the same as the one given in [Can24, §5.3] — briefly, the
count of rigid elements M(R0), for R0 large enough, equals the count of ends
of type (3).

Thus it remains to show the count of ends of type (3) represents PSS(β).
To analyze this, consider the change of coordinates w(s, t) = u(s−R, t), so
that w is defined on (−∞, R]×R/Z. Then, along any sequence (Rn, xn, un),
the shifted map (xn, wn) has a subsequence which converges to a solution
(x,w) of the PSS-equation, where lims→∞w(s, t) = C(x). For this step to
work properly, we should assume that pR,x,s−R,t converges as R → ∞ to a
limiting perturbation term px,s,t compatible with the PSS equation.

On the other hand, for any solution (x,w) of the PSS equation, a standard
gluing argument for solutions to Floer’s equation with Lagrangian boundary
conditions shows that each (x,w) arises as the limit of an end of type (3) in
the above sense. Thus we conclude that PSS(β) = Θ(i(β)), as desired. □

4.4. Product structures. In this final subsection, we explain why Θ is com-
patible with the product structures. Such a result was originally proved in
[AS10], and is a cornerstone in the relationship between string topology and
Floer cohomology.

Remark. Let us comment that there is another way in the literature which
relates string topology with Floer cohomology, where one defines a map
from HF(Ht, J) to a suitable Morse homology of the free loop space. In this
context, [Abo15, pp. 398] proves the product structures are identified, and
the argument is simpler than the argument in [AS10] (and the argument
we will explain in this section). That this direction of morphism provides
simpler argument for the identification of ring structures was observed also in
[AS12, pp. 500]. We should note that [CHO23, §5.4] show that the map from
Floer cohomology to Morse homology considered by [Abo15] does respect
filtrations (the argument relies on special choice of (Ht, J) and a novel action
versus length estimate); moreover this argument can be applied to a suitable
construction of the pair-of-pants product to show the product structures are
preserved when the map is restricted to each filtration level.

Unfortunately, this direction of the morphism (going from Floer cohomology
to string topology) does not seem to work well for our purposes. It does seem
likely that, if we were to restrict to domains Ω which appear as the unit disk
bundle associated to a Riemannian metric, then we could argue instead using
Morse homology and using existing results in the literature, and reverse the
direction of the Θ morphism, and obtain a proof (albeit a slightly convoluted
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one) that the product structures are identified.5 We prefer to stick with the
present direction of the Θ morphism, and give a direct proof.

4.4.1. Set-up. Throughout, we fix classes αi ∈ H(Λci), i = 0, 1.

First, pick two Hamiltonian system Hi,t, i = 0, 1, defined on [0, 1], and an
almost complex structure J so that:

(1) Hi,t = ci(t)r holds outside of r ≥ r0,
(2) Hi,t = 0 unless |t− 1/2| < 1/4,
(3) (Hi,t, J) are admissible for defining CF, when Hi,t is extended to

R/Z by 1-periodicity,
(4) the slope of Hi,t is at least ci.

Define:

H∞,t :=

{
2H0,2t for t ∈ [0, 1/2],

2H1,2t−1 for t ∈ [1/2, 1],

and extend H∞,t to R/Z by 1-periodicity. Finally, suppose that:

(5) (H∞,t, J) is admissible for defining CF.

Since the slope of H∞,t is the sum of the slopes of H0,t and H1,t, there is a
pair-of-pants map:

∗ : HF(H0,t, J)⊗HF(H1,t, J) → HF(H∞,t, J).

Second, pick representatives Ai : P × R/Z →M for αi so that:

(1) x ∈ Pi 7→ Ai(x, 0), i = 0, 1, are mutually transverse,
(2) max{⟨p, q′(t)⟩ : p ∈ Ω ∩ T ∗Mq(t)} ≤ ci(t) for each q(t) = Ai(x, t).

the second condition can achieved by a x-dependent smooth family of time-
reparametrizations, since the integral of ci(t) is strictly larger than ℓΩ(q(t)).
As a consequence, it follows that Ai(x, 0) = Ai(x, t) unless |t− 1/2| < 1/4.

Define P∞ to be the fiber product of the transverse maps in (1), and define:

A∞ : P∞×R/Z →M given by A∞((x0, x1), t) =

{
A0(x0, 2t) for t ∈ [0, 1/2],

A1(x1, 2t) for t ∈ [1/2, 1],

which we extend from [0, 1] to all of R by 1-periodicity. Then A∞ ∈ Z(Λc0+c1),
and [A∞] = α0 ∗ α1.

The goal in this section is to prove:

(23) Θ(A∞) = Θ(A0) ∗Θ(A1),

as cycles in HF(H∞,t, J).

5Note that the length function ℓΩ is the same as the length function associated to the
fiberwise convex hull of Ω. In particular, there is the potential of a Morse theoretical
argument, using the energy functional for (irreversible) Finsler metrics.
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4.4.2. An auxiliary map. Before explaining why (23) holds, we will define an
auxiliary cycle in CF(H∞,t, J) which we will show represents both Θ(A∞)
and Θ(A0) ∗Θ(A1).

Define a connection one-form a on C \ {0} by the formula:

as,t = H∞,tdt

in cylindrical coordinates z = e−2π(s+it). Note that the connection one-
form a vanishes outside of the segments contained between rays R+ie

±πi/4

(where its values are determined by H1,t) and R−ie
±πi/4 (where its values

are determined by H0,t), as shown in Figure 10.

H1,t

H0,t

Figure 10. Illustration of the connection one-form a on the
domain C \ {0}.

Let us say that two smoothly embedded closed disks D0, D1 are shadowing
provided:

(1) D0 ⊂ {z = x+ iy : y < 0} and D1 ⊂ {z = x+ iy : y > 0},
(2) in coordinates z = e−2π(s+it), each ray with fixed t coordinate in

[1/8, 3/8] intersects ∂D0 in points s0−(t) < s0+(t), where s± are smooth
functions on [1/8, 3/8], and the radial vector ∂s is transverse to ∂D0

when t ∈ [1/8, 3/8]

(3) in coordinates z = e−2π(s+it), each ray with fixed t coordinate in
[5/8, 7/8] intersects ∂D1 in points s1−(t) < s1+(t), where s± are smooth
functions on [5/8, 7/8], and the radial vector ∂s is transverse to ∂D1

when t ∈ [5/8, 7/8]

A homotopy of shadowing disks is an isotopy of embedded disks D0,τ , D1,τ

which satisfy the above properties for all τ .

The conditions admittedly look a bit strange, but it is perhaps best under-
stood by comparing Figure 11 with Figure 10.

D1

D0

Figure 11. Shadowing disks block the rays from hitting the origin.
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Given shadowing disks D = (D0, D1), define a connection one-form aD on

ΣD := C \ Interior(D0 ∪D1)

by the formula:

aDz =

{
0 if the ray joining 0 and z is misses the interior of D0 ∪D1,

az otherwise;

referring to Figure 11, the connection one-form aD is supported in the shaded
region of ΣD. It is straightforward to show that aD is smooth on ΣD.

Shadowing disks D = (D0, D1) also determine moving Lagrangian boundary
conditions for ∂ΣD. Referring to the notation si±(t) in (2) and (3), we define

Lagrangians Lx0,x1,z on P0 × P1 × ∂ΣD by the rule:

LD
x0,x1,z :=


T ∗MA0(x0,2t) if z = e−2π(s0−(t)+it) for t ∈ [1/8, 3/8],

T ∗MA1(x1,2t) if z = e−2π(s1−(t)+it) for t ∈ [5/8, 7/8],

T ∗MA0(x0,0) if z ∈ ∂D0 and is not captured by previous rule,

T ∗MA1(x1,0) if z ∈ ∂D1 and is not captured by previous rule.

In words, the Lagrangian boundary conditions are determined by the two
loops Ai(xi,−), i = 0, 1, which are traversed along the “outer segment”
determined by s = si−(t), and are parametrized using the angular coordinate

associated to z = e−2π(s+it). Outside of the outer segments, the Lagrangian
boundary conditions remain fixed at T ∗MAi(xi,0), the fiber over the basepoint
of the loop.

This set-up leads to data (aD, LD) on the family P0 × P1 ×ΣD ×W . For an
almost complex structure J on the same family, so that Jx0,x1,z = J is fixed
outside of a sufficiently large disk, and a perturbation term p on the same
family, there is an associated moduli space M(aD, p, J, LD) of finite energy
solutions (x0, x1, u) satisfying boundary conditions:

u(z) ∈ Lx0,x1,z for z ∈ ∂ΣD,

and which solve the general form of Floer’s equation described in §3.3.3.
Lemma 61. There is an a priori energy bound on solutions:

(x0, x1, u) ∈ M(aD, p, J, LD)

which is independent of D and p, provided p is sufficiently small.

Proof. The argument is similar to that used for Lemma 56, in that it suffices
to bound the integrals:

I =

∫
∂ΣD

u∗λ− v∗aD

independently of the solution; here v(z) = (z, u(z)) is as in Lemma 30. The
integrand vanishes on points z ∈ ∂D which do not lie in the outer segments
s = si−(t) described above; thus it suffices to bound the integral over the outer
segments. We parametrize the outer segments by the angular coordinate t in
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z0(t) = e−2π(s0−(t)+it) and z1(t) = e−2π(s1+(t)+it). The integral decomposes as
I = I0 + I1 where:

I0 =

∫ 3/8

1/8

〈
p(t), q′(t)

〉
− 2H0,2t(u(z(t)))dt, where q(t) = A0(x0, 2t).

and similarly for I1, with [1/8, 3/8] replaced by [5/8, 7/8]. Reparametrizing
the integral by τ = 2t for i = 0 and τ = 2t− 1 for i = 1, so τ ∈ [1/4, 3/4],
and using the same estimate as in Lemma 56 together with property (2)
in the choice of Ai(xi, t), one concludes that each Ii is uniformly bounded
independently of the solution. This completes the proof. □

Counting the rigid finite energy solutions (x0, x1, u) in M(aD, p, J, LD) for
generic p, where the asymptotic orbit of u equals γ (at the negative end, as

seen in the coordinates z = e−2π(s+it)) gives a coefficient Nγ . Define:

Π(D) :=
∑

Nγγ ∈ CF(H∞,t, J).

Then:

Lemma 62. The chain Π(D) is a cycle for each choice p, D, J , provided p
is generic. The homology class of Π(D) is independent of p, J , and is also
independent of the homotopy class of D in the space of shadowing disks.

Proof. The argument is similar to many other arguments in this paper, in
particular, Lemma 57. We omit the proof. □

To eliminate the apparent dependency on the homotopy class of shadowing
disks, we select a distinguished homotopy class. Let us fix Dstd = (Dstd

0 , Dstd
1 )

to be standard circular shadowing disks, defined to be:

Dstd
0 = −i+D(r) and Dstd

1 = i+D(r)

where D(r) is the disk of radius r ∈ (2−1/2, 1); see Figure 12. Elementary
geometry proves these are indeed shadowing disks, and the homotopy class
is independent of the choice of r.

Figure 12. Standard circular shadowing disks

The two results whose proofs occupy the rest of the paper are:

Lemma 63. If Dstd comprises standard circular shadowing disks, then:

Π(Dstd) = Θ(A0) ∗Θ(A1),

as elements of HF(H∞,t, J).
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Lemma 64. If Dstd comprises standard circular shadowing disks, then:

Π(Dstd) = Θ(A∞),

as elements of HF(H∞,t, J).

Combining these, we conclude Θ(A∞) = Θ(A0) ∗ Θ(A1), completing the
proof that Θ is compatible with the product structures (since A∞ represents
the Chas-Sullivan product α0 ∗ α1). Together with the results in §4.2 and
§4.3, this completes the proof of Theorem 11.

Relatively speaking, Lemma 63 is easy and Lemma 64 is hard. We prove
Lemma 63 in the next subsection §4.4.3, and the proof of Lemma 64 occupies
the remaining parts of the paper.

4.4.3. Proof of Lemma 63. The argument is fairly standard, and we only
explain the main construction, omitting the Floer theory details.

For r ∈ (2−1/2, 1), let D0(r) = −i + D(r) and D1(r) = i + D(r), and let
D(r) = (D0(r), D1(r)); these form standard circular shadowing disks.

Parametrize the punctured disk Di(r)
× as a positive cylindrical end using

cylindrical coordinates s+ it. Then, aD(r) extends to a collar s ∈ [0, ϵ] for
some small ϵ, using the same formula (as slightly shrunken disks remain
shadowing disks). Let us abbreviate:

ai = aDi(r)|s∈[0,ϵ],
which takes the form:

ai = Ki,s,tds+Gi,s,tdt,

and a moment’s thought reveals that Ki,s,t = bi(s, t)r and Gi,s,t = ci(s, t)r
for r ≥ r0. Moreover, bi(s, t)ds+ ci(s, t)dt is a closed one-form, and:∫ 1

0
ci(s, t)dt = slope of Hi,t.

Moreover, ai has zero curvature, since aDi(r) has zero curvature. The goal is
now to extend ai to all of [0,∞)× R/Z. Define:

G′
i,s,t = β(1− s/ϵ)Gi,s,t + β(s/ϵ)Hi,t

K ′
i,s,t =

∫ t

0
∂sG

′
i,s,τdτ − t

∫ 1

0
∂sG

′
i,s,τdτ.

Note that G′
i,s,t = Gi,s,t in a neighborhood of s = 0, by construction of the

standard cut-off function β. Since ai has zero curvature, it holds that:

∂sGi,s,t = ∂tKi,s,t,

where we use the fact that ai(V1), ai(V2) are Poisson-commuting for any
two tangent vectors V1, V2 based at the same point (this holds since ai is

obtained by restricting aD(r), which has this property). Thus it holds that
K ′

i,s,t = Ki,s,t also holds in a neighborhood of s = 0. Thus:

a′i = K ′
i,s,tds+G′

i,s,tdt

is a valid extension of ai from [0, ϵ] × R/Z to [0,∞) × R/Z, provided we
shrink ϵ. Moreover, as in §3.4.2, a′i has curvature bounded from above.
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Denote by:

a′ =


a′0 in − i+D(r)×,

a′1 in i+D(r)×,

aD(r) elsewhere,

which is a smooth connection one-form on C \ {i,−i}. By construction, a′

agrees with H∞,tdt on the cylindrical end around z = ∞, (since it agrees

with aD(r)), and agrees with H0,tdt, H1,tdt in the cylindrical ends around
the punctures −i, i. A bit of thought (and standard arguments) show
that appropriately counting the rigid finite-energy solutions of the equation
determined by (a′, J, p), for some perturbation term p, defines a chain-level
representation of the pair-of-pants operation:

∗ : CF(H0,t, J)⊗ CF(H1,t, J) → CF(H∞,t, J).

Next we explain how to deform the equation defining Π(D) to the equation
defining ∗ ◦ (Θ(A0),Θ(A1)). The process is illustrated in Figure 13.

Figure 13. 1-parameter family used to prove Lemma 63;
as the parameter R increases, the boundary components
of the surface contract onto the points ±i. Solutions in the
associated parametric moduli space converge to configurations
representing Θ(A1) ∗Θ(A2)

For each R ∈ [0,∞), define aR to be the restriction of a′ to the region
obtained by removing from the disks D0(r) and D1(r) the cylindrical ends

defined by s > R. Then a0 agrees with aD(r), and aR “converges” to a′ as
R → ∞. Let us denote by Σ(R) the surface with boundary obtained from
this removal, so Σ(0) = ΣD.

For each R and xi ∈ Pi, there are moving Lagrangian boundary conditions for
(aR,Σ(R)) defined as follows: pick a reparametrization ρR,xi : R/Z → R/Z
so that:

max{
〈
p, q′(t)

〉
: p ∈ Ω ∩ T ∗Mq(t)} < ci(R, t) where q(t) = Ai(xi, ρR,xi(t)),

which induces boundary conditions by requiring that u(R, t) ∈ T ∗Mq(t) for
each solution (R, x0, x1, u). The functions ρR,xi should be chosen so that:

(1) the boundary conditions for R = 0 agree with the previously defined
boundary conditions for aD,ΣD,

(2) ρR,xi(t) = t for R sufficiently large.
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Because the set of reparametrizations achieving the above estimate is con-
tractible (the condition is a convex condition ∂tρR,xi(t), since the slope of
Hi,t is large enough), it is possible to pick such ρR,xi .

The data: aR,Σ(R), J , the above (R, x0, x1)-dependent moving boundary
conditions, and a generic perturbation term p on the family, leads to a moduli
space M of solutions (R, x0, x1, u). The 1-dimensional component of M maps
to [0,∞) via (R, x0, x1, u) → R, and generic fibers M(R0) defined by R = R0

are zero-dimensional manifolds. By standard arguments, similar to those
used in §2.1.3, the count of:

(1) elements in M(0) and,
(2) non-compact ends of M containing sequences (Rn, x0,n, x1,n, un) with

Rn → ∞,

define homologous cycles in CF(H∞,t, J). The count of (1) is exactly the
count defining Π(D), while the count of (2) represents Θ(A1) ∗ Θ(A2), as
can be shown using standard Floer theory gluing arguments. We note that
in this last part of the argument, one should pick the perturbation term p so
that it converges in an appropriate sense as R→ ∞. □

4.4.4. Geometric set-up for Lemma 64. The main idea is to deform the
shadowing disks to be rectangles with rounded corners, with a very thin neck
between the disks, as shown on the left of Figure 14. Roughly speaking, as the
neck gets thinner, the solutions approximate those used to define Θ(A∞) (in
fact, the neck will degenerate to a flow line connecting two marked points on
the boundary of the limiting curve). The presence of this flow line indicates
that the gluing/compactness theory we will employ is similar to the adiabatic
gluing/compactness theory of [FO97, Ekh07, OZ11, EENS13, CC23].

We now describe the surface and various regions inside the domain in more
detail. The surfaces obtained by removing the approximately rectangular
shadowing disks from C have a long neck region. As the space between the
shadowing disks shrinks, the modulus of the neck grows. This neck region is
shown in Figure 14.

Define the domain Σ(R), for R ≥ R0, by replacing the inner neck of modulus
2R0 with a neck of modulus 2R. Note that Σ(R) is defined abstractly and is
not defined as a subset of C. One can still speak about the various regions
inside of Σ(R); i.e., it still makes sense to speak about R1,R2, and the necks.

In the limit R → ∞, the surface Σ(R) converges (in the moduli space of
domains) to a surface Σ(∞) which is conformally equivalent to a disk with
one interior puncture and two boundary punctures. The local model around
the boundary punctures is illustrated in Figure 15. The limit surface Σ(∞)
has two ends (rather than one neck).

There is an obvious connection one-form a on Σ(R0), described by the
shadowing disk construction. It has the property that a vanishes on the neck
region. When we define Σ(R) by removing the inner neck and gluing in a
longer neck, we obtain a connection one-form a by requiring that it vanishes
on the neck and agrees with the previously defined a outside the neck.
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The Lagrangian boundary conditions are defined for parameter R0 by the
shadowing disk construction. For R ≥ R0, one defines the Lagrangian
boundary conditions to match those for R0 away from the neck, and require
solutions to map the boundary of the neck to cotangent fibers T ∗MA(x0,0)

and T ∗MA(x1,0) (as in the boundary conditions for R0).

R1

R1

R2

2R0

ℓ ℓ

Figure 14. (Left) Shadowing disks defining the domain
Σ(R0); the region R1 is the region between the rays where the
connection one-form aR0 is supported; the region R2 is the
complement of a large disk centered on the origin. (Right)
The neck region of Σ(R0) is the neck with modulus 2R0; the
total neck is the neck with modulus 2ℓ+ 2R0.

ℓ

Figure 15. The end region on the limiting disk around the
left end; the picture around the right end is a reflected version.

Let us pick perturbation one-forms pR depending on R with the property
that pR is supported in the region R1 ∩ Rc

2; in particular, the perturbation
term vanishes near the neck, and the equation appears as Floer’s equation
for (H∞,t, J) in the cylindrical end R2, using coordinates z = e−2π(s+it).

Once a complex structure is chosen (see §4.4.5), the construction then gives a
parametric moduli space M of solutions (R, x0, x1, u) where (x0, x1, u) solves
the equation for the domain Σ(R). Let us denote by M the one-dimensional
component, and by M0 the rigid component; we will not have occasion to
consider higher dimensional components. We denote by M(R) the fiber of
M of solutions (x0, x1, u), so M(R) consists of rigid solutions for generic R.

As a special case, we define M(∞) to be the moduli of rigid finite energy
solutions on the limiting surface Σ(∞), where (x0, x1) lies in the fiber product
P∞; the finite energy condition implies any solution converges exponentially to
a removable singularity lying on T ∗MA(x0,0) = T ∗MA(x1,0) at the punctures.

We will require that pR is equal to p∞ for R sufficiently large, where p∞ is a
perturbation term used to achieve transversality for M(∞). As part of the
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gluing analysis, we will show that such pR also achieve transversality for the
parametric moduli space M.

In §4.4.6 we will explain how to pick the parameter ℓ; essentially it needs
to be chosen large enough that the neck/ends are mapped into a small
neighborhood of the cotangent fiber T ∗MA(x0,0).

At this stage, we claim the following:

Proposition 65. The count of elements (x0, x1, u) ∈ M(∞), weighted by the
asymptotic orbit at the cylindrical end, defines a cycle in CF(H∞,t, J) which
represents Θ(A∞).

Proof. The surface Σ(∞) is conformally equivalent to a closed disk D(1)
with two boundary punctures (say −1, 1) and one interior puncture 0. The
equation and boundary conditions are what is used to define Θ, with the sole
exception that the cylindrical end at 0 is not the standard cylindrical end
around 0 (the biholomorphism between Σ(∞) and D(1) does not respect the
cylindrical coordinates). However, the cycle one obtains is stable under small
changes in the data, and so one can correct the cylindrical end very close to
zero, without changing the resulting cycle. In this fashion, one proves the
count obtained from M(∞) is exactly the one used to define Θ(A∞). □

Moreover, standard Floer theoretic arguments show:

Proposition 66. The count of elements (R0, x0, x1, u) ∈ M(R0), weighted by
the asymptotic orbit at the cylindrical end, and the count of non-compact
ends of M, also weighted by the asymptotic orbits, define homologous cycles
in CF(H∞,t, J). Both of these cycles represent Π(D).

Proof. The argument is standard and similar to other arguments in this
paper. We only comment that the chain homotopy between the two cycles is
given by counting the rigid elements in the parametric moduli space M0. □

Thus the rest of the proof is dedicated to proving the cycle obtained by
counting solutions in M(∞) also represents the cycle Π(D), i.e., represents
the cycle obtained by counting the non-compact ends of M. This step of
the proof is what involves the delicate gluing argument. The argument is
quite technical, and we have written it with an expert audience in mind; we
assume the reader is already familiar with gluing theory in Floer theory, and
we focus on the details needed to convince an expert in the validity of the
approach.

4.4.5. Choice of almost complex structure. To simplify the argument as much
as possible, we will make a particular choice of almost complex structure.
The construction uses Riemannian geometry. For a given Riemannian metric
g on TM (and hence on T ∗M), and a smooth function f : [0,∞) → (0,∞),
we let Jg,f be the almost complex structure so that:

Jg,f =

[
0 −f(ρg)g∗

(f(ρg)g∗)
−1 0

]
with respect to splitting Ver⊕Horg,
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where ρg(p) = g(p, p) is the fiberwise radius-squared function, and g∗ is the
duality isomorphism between TM and T ∗M . The horizontal distribution
Horg is defined using the Levi-Civita connection.

The key result about such almost complex structures is that:

Lemma 67. Let (Σ, ∂Σ) be a (not necessarily compact) Riemann surface
with boundary. Let fz, z ∈ Σ, be a family of functions [0,∞) → (0,∞),
yielding a domain dependent family of almost complex structures Jg,fz . For
any Jg,fz -holomorphic map u : (Σ, ∂Σ) → T ∗M , whose boundary is mapped
onto cotangent fibers, the function ρg(u) does not attain any local maxima.

Proof. Write u(s, t) = (p(s, t), q(s, t)) where q(s, t) is the projection to the
base, and p(s, t) is considered as section of u∗T ∗M . The computations in
[CC23, §2] imply that:

∇sp = fz(ρg)g∗∂tq and ∇tp = −fz(ρg)g∗∂sq.
A standard computation gives:

∆ρg = ∆g(p, p) ≥ 2g(∇s∇sp, p) + 2g(∇t∇tp, p),

and using the above holomorphic curve equation, and the well-known fact
∇s(g∗∂tq) = ∇t(g∗∂sq) (see [CC23, Lemma 2.4]), we conclude:

∆ρg ≥ (∂sρg)fz(ρg)
−1∂s(fz(ρg))− (∂tρg)fz(ρg)

−1∂t(fz(ρg)).

If ∂Σ = ∅, the desired result then follows from the maximum principle [GT98,
Chapter 3]. In general, observe that dρg vanishes on directions orthogonal to
the boundary, and hence doubles to a C2 function; the maximum principle
can then be applied to this doubling. □

Having established this, we construct a family Jx0,z of almost complex
structures on the family P0 × C, as follows. Pick a family of Riemannian
metrics gx0 so that gx0 is flat in a neighborhood of A0(x0, 0). Then pick the
almost complex structures Jx0,z so that:

(1) in R2, Jx0,z = J is fixed,
(2) inside of a disk slightly smaller than the one bounding R2, it holds

that Jx0,z = Jgx0 ,fz ,

(3) fz is locally constant inside the total neck (where it equals f0) and
on a neighborhood of R1 (where it equals fz1 for some z1 ∈ R1).

(4) f0(ρ) = 1 holds for ρ ≤ r1,

(5) fz(ρ) = ρ1/2 for ρ ≥ r1 + 1 holds at all points z.

Note that because fz(ρ) = ρ1/2 holds outside of a compact set, Jx0,z is
Liouville equivariant outside of a compact set.

The construction is admittedly a bit ad hoc, but the benefits of the construc-
tion is that:

Lemma 68. There is a constant C independent of R0 and fz for z ̸∈ R1 (but
depending on fz1) so that any finite energy solution (x0, x1, u) in the moduli
space M(R), where R ∈ [R0,∞], satisfies ρx0(u) ≤ C. In other words, fixing
fz1, one can alter the choice of fz for z ̸∈ R1 so the above conclusion holds.
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Proof. We consider the two regions R1,R2 ⊂ Σ(R) illustrated in Figure 14.
By Lemma 67, the supremum of ρx0(u) is equal to the supremum of ρx0(u)
on the region R1 ∪ R2.

By the earlier maximum principle Proposition 28, the supremum of ρx0(u)
over R2 depends only on (H∞,t, J), and the apriori energy bound which is
independent of the choice of family of almost complex structures and R.

Any point in R1 can be joined to R2 by a radial path. Standard bubbling
analysis proves the derivatives along the path are bounded by a constant
depending only on the Hamiltonian connection and fz1 (the radial path
remains inside R1). Therefore the supremum of ρx0(u) over R1 is also bounded
independently of fz for z ̸∈ R1, and R0. This proves the statement. □

Therefore we can pick r1 larger than C, because C is independent of r1.

The upshot of this construction is the following:

Corollary 69. Any solution (x0, x1, u) in M(R), R ∈ [R0,∞], is J0-holomorphic
on the intersection of the total neck and u−1(B(1)) if B(1) is a coordinate
ball around A(x0, 0) where gx0 is flat; here J0 is the standard almost complex
structure in canonical coordinates p, q.

The standard almost complex structure is the one which satisfies J0∂pi = ∂qi ,
i = 1, . . . , n. In other words, we can assume without loss of generality that
Jx0,z is standard on canonical coordinates on the coordinate ball B(1), and
if z is in the total neck.

4.4.6. On the choice of ℓ. In this subsection, we prove that ℓ can be chosen
large enough that certain properties hold for solutions in M(R) for R ≥ R0.

Lemma 70. For any ϵ > 0, the parameter ℓ can be chosen large enough that:
for all solutions (R, x0, x1, u) ∈ M(R), u maps the neck (or ends if R = ∞)
into the preimage of B(ϵ), where B(ϵ) ⊂ B(1) is contained in the coordinate
ball around A(x0, 0). Recall the neck/ends exclude the pieces with modulus ℓ.

Proof. This is a simple compactness argument, and is left to the reader. □

The parameter ϵ will be chosen as follows. For each of the finitely many points
(x0, x1) in P∞ ⊂ P0 × P1 so that there is some solution (x0, x1, u) ∈ M(∞),
consider the non-linear map:

(24) (y0, y1) ∈ U ⊂ P0 × P1 7→ A1(y1, 0)−A0(y0, 0)

defined on the open neighborhood of points (y0, y1) where A0(y0, 0), A1(y1, 0)
lie in the coordinate ball B(1) (this difference vector is computed using the
coordinate chart).

By the transversality of A0(−, 0), A1(−, 0), this map is a submersion at
(x0, x1), and the kernel of the differential is TP∞,(x0,x1). Pick a smooth
open disk V passing through (x0, x1) so that TV(x0,x1) and TP∞,(x0,x1) are
complementary spaces. Then the restriction of (24) to V is a diffeomorphism
between small neighborhoods of (x0, x1) ∈ V and 0 ⊂ Rn. We assume that ϵ
is small enough that B(ϵ) is contained in this small neighborhood; thus, for
each vector q in B(ϵ), there is (y0, y1) ∈ V so that:
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(1) A1(y1, 0)−A0(y0, 0) = q.

Moreover, for appropriate metric on P0 × P1 it follows that:

(2) dist((y0, y1), (x0, x1)) ≤ |q|.

For the rest of argument, we fix ϵ, ℓ, and V , without further modifications so
that the conclusion of the lemma holds.

4.4.7. Linearization framework for solutions of M(∞). Let (x0, x1, u) be a
solution in M(∞). The goal in this section is to describe the linearization
framework. As usual, the space of maps nearby u is modelled on an appro-
priate Banach space completion of sections of u∗TW . Since the domain of u
is a punctured domain, we will use an appropriately weighted Sobolev space.
For use as a weight, fix δ ∈ (0, π).

First we define W 1,p,δ, p > 2, to be the Sobolev space of sections of u∗TW
which are tangent to the Lagrangian boundary conditions with an exponential
weight in the ends. On the end regions, there is a canonical trivialization
of u∗TW ≃ Cn induced by the canonical coordinates associated to the
coordinate ball B(1) around A(x0, 0) = A(x1, 0), and the linear deformations
ξ are required to point in the real space Rn.

There are two ends: the left end is identified with [0,∞)× [0, 1] and the right
end with (−∞, 0]× [0, 1]. In these ends, we require that:

e±δsξ(s, t) is in W 1,p,

where s-coordinate on the end is such that the line s = 0 corresponds to the
innermost boundary of the strip of modulus ℓ.

Of course, if one only uses variations in W 1,p,δ, then one could not change
the position of the removable singularity of u at the two punctures. Thus it
is necessary to stabilize to allow this point to vary. We therefore pick two
linear maps Φ± from Rn to the space of smooth variations of u so that:

(1) Φ−(v) = β(s)v, Φ+(v) = 0 holds in the left end,
(2) Φ−(v) = 0, Φ+(v) = β(−s)v holds in the right end,

where β cuts off in the cut-off region shown in Figure 14.

This gives a family of variations:

(v−, v+, ξ) ∈ Rn ⊕ Rn ⊕W 1,p,δ 7→ Φ−(v−) + Φ+(v+) + ξ,

which is sufficient to capture all nearby maps with the same boundary
conditions. For further information on the use of stablized exponentially
weighted Sobolev spaces in the context of maps with Lagrangian boundary
conditions with boundary punctures, we refer the reader to [BC07].

Because M(∞) is a parametric moduli space of triples (x0, x1, u), where
(x0, x1) ∈ P∞, there are also variations which move the point (x0, x1). To
account for this, we introduce a linear map Ψ taking w = (w0, w1) ∈ TP∞
into the space of smooth variations of u so that:

(3) the projection of Ψ(w) at z ∈ ∂Σ(∞) onto the zero section matches
the variation of Ai(xi, t(z)) in the direction of wi ∈ TPi,xi ; here the
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t coordinate is determined by the relation that u(z) ∈ T ∗MAi(xi,t(z))

and is described in greater detail in the shadowing disks construction;
(4) Ψ(w) is constant and imaginary in the ends (i.e., projects to a constant

imaginary vector).

The total space of variations of (x0, x1, u) is then identified with:

Rn ⊕ Rn ⊕ TP∞ ⊕W 1,p,δ

and each tuple (v−, v+, w, ξ) produces a variation of u given by:

Φ−(v−) + Φ+(v+) + Ψ(w) + ξ.

By the usual procedure (for concreteness, we use a Riemannian exponential
map), one can differentiate the differential equation in the directions of these
these variations. This produces a linear differential operator Dx0,x1,u.

By using a Riemannian exponential map for a metric which agrees with the
standard metric in the canonical coordinate system above the coordinate
ball B(1), it is arranged that:

(25) Dx0,x1,u(Φ−(v−) + Φ+(v+) + Ψ(w) + ξ) = ∂̄ξ on the ends,

where ∂̄ = ∂s + i∂t, using the aforementioned trivialization. Then it is clear
that the left hand side of (25) is valued in the exponentially weighted Lp

space.

To obtain this simple formula for the linearized operator on the ends, one
argues that the nearby map associated to the variation (v−, v+, w, ξ) equals:

u+Φ−(v−) + Φ+(v+) + Ψ(w) + ξ,

on the ends (in the canonical coordinate system) provided v−, v+, w, ξ are
not too big (this is possible since u lies above B(ϵ), and so there is lots of
room before one leaves B(1), the domain of the coordinates).

Because (x0, x1, u) is supposed to be rigid, the Fredholm index of (25) as a
map Rn ⊕ Rn ⊕ TP∞ ⊕W 1,p,δ → Lp,δ is zero. By the standard Sard-Smale
argument, as in [MS12], the generic perturbation term p∞ can be chosen so
the operator is an isomorphism for all solutions (x0, x1, u). In particular, it
has a bounded inverse. This will be used in §4.4.9.

4.4.8. Pregluing. The strategy is now to:

(1) For each rigid solution (x0, x1, u) ∈ M(∞), construct preglued solu-
tions which are supposed to approximate solutions in M(R) for R
sufficiently large. Prove they approximately solve the equation, as
measured with an appropriately weighted Sobolev space norm.

(2) Prove that each preglued solution approximates exactly one of the
non-compact ends of M containing sequences (Rn, x

n
0 , x

n
1 , un) with

Rn → ∞. This involves analyzing a linearized operator for each
preglued solution (gluing).

(3) Prove that genuine solutions in M(R) are close to the preglued
solutions as R→ ∞. Together with (2), this establishes a bijection
between the non-compact ends and solutions in M(∞).
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This is a standard strategy for Floer gluing, and the precise details are quite
close to the “adiabatic” gluing results cited in §4.4.4. In this subsection, we
are concerned with step (1) of the strategy.

First of all, each solution (x0, x1, u) ∈ M(∞) determines two points p−, p+
in the cotangent fiber T ∗MA0(x0,0) = T ∗MA1(x1,0) ≃ Rn — the identification
with Rn uses the canonical coordinates above the ball B(1). The point p−
is the asymptotic at the left end, and p+ is the asymptotic at the right
end. These two points vary smoothly with the solution, and there are two
constants C± so that:

(1) on the left end, |u(s, t)− p−| ≤ C−e
−πs, where s ∈ [0,∞),

(2) on the right end, |u(s, t)− p+| ≤ C+e
πs, where s ∈ (−∞, 0].

This follows from the removable singularity theorem for J0-holomorphic
maps.

The argument will require us splitting the neck of modulus 2R into specific
regions; this is illustrated in Figure 16.

s

1 1

s2r

Figure 16. Decomposing R = s+ 1+ r. The shaded regions
are the cut-off regions.

For each (x0, x1, u), q0 ∈ B(ϵ/2), define:{
Nr : [−r− 1, r+ 1]× [0, 1] → Rn × Rn,

Nr(z) := iq0 + 2r−1((r− z)p− + (r+ z)p+),

where p± are considered as real-vectors (in Rn × {0}). Let us observe that,
the imaginary part of Nr(z) equals q0 + 2r−1(p+ − p−)t, and so, provided r
is sufficiently large, the size of the imaginary part can be bounded by ϵ, and
hence Nr can be considered as a holomorphic map in Rn ×B(1) ⊂ T ∗M .

Let y0, y1 ∈ V be such that:

(3) A1(y1, 0)−A0(y0, 0) = 2r−1(p+ − p−), and
(4) pick q0 = A0(y0, 0).

ThenNr takes boundary conditions for t = 0, 1 on T ∗MA0(y0,0) and T
∗MA1(y1,0).

The idea is to glue this holomorphic neck to the existing solution (x0, x1, u)
to form a preglued solution.

Since V is contained in a small neighborhood of (x0, x1), we can use the
Riemannian exponential map to define a variation Γ(y0, y1) of u which pushes
the boundary conditions from those for (x0, x1) to those for (y0, y1), in a
controlled way: we suppose that the C1 size of Γ(y0, y1) is controlled by the
distance dist((y0, y1), (x0, x1)). Moreover, we suppose that Γ is supported
away from the region R2. We denote this variation by u+ Γ(y0, y1), where
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the “+” symbol is to be interpreted using the Riemannian exponential map.
Since the size of Γ(y0, y1) is controlled by r−1|p+ − p−|, we can assume that
u+ Γ(y0, y1) maps the neck into Rn ×B(2ϵ) provided r is large enough.

Finally, we define the preglued solution PGs,r(x0, x1, u) as a piecewise function
gluing together u+ Γ(y0, y1) and Nr, as illustrated in Figure 17.

2r

Nr(z) u+ Γ(y0, y1)u+ Γ(y0, y1)

Figure 17. Preglued solution; compare with Figure 14. On
the shaded cut-off regions (which are mapped into B(2ϵ)),
one should interpolate between the solutions using standard
cut-off functions.

In the left cut-off region, parametrized by s, t ∈ [0, 1]2, the interpolation is
given by:

β(s)Nr(z) + (1− β(s))(u+ Γ(y0, y1)),

and a similar (reflected) formula is used in the right cut-off region.

The decomposition of R into s+ 1 + r affects how this preglued solution is
constructed, so different choices of s, r yield different preglued solutions.

It will be important to measure sizes of variations of PGs,r(x0, x1, u) using a
weighted Sobolev norm. We introduce the weight:

w = min{eδ(R+s), eδ(−s+R)}
supported on the neck of length 2R parametrized so s = 0 is the middle
of the neck (see Figure 14 for illustration of the region). Then we define
Lp,w as the set of Lp

loc sections η which are Lp integrable on the asymptotic
cylindrical end, and so that wη is Lp integrable on the neck; W 1,p,w is defined
analogously.

We then have:

Lemma 71. If F (y0, y1, w) is the non-linear map encoding the PDE for
solutions of M(R), i.e., in local coordinates:

F (w) = ∂sw + Jx0,z(w)∂tw − a(w),

then the Lp,w size is bounded by:

∥F (y0, y1,PGs,r(x0, x1, u))∥Lp,w ≤ (C+ + C−)e
−(π−δ)s + Csr

−1,

where C± are defined in (1) and (2), and Cs is independent of x0, x1, u, δ, r,
but depends on s.

Proof. Since u solves the equation, F (y0, y1, u+Γ(y0, y1)) will approximately
solve the equation up to an error whose C0 size is controlled by

r−1|p+ − p−|,
since that size governs the C0 size of Γ(y0, y1).
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The integral of this error over the region disjoint from the neck is then
bounded by C1r

−1. Moreover, the integral of this error over the necks of
length s+ 1 produces errors of size:

r−1|p+ − p−|(s+ 1)1/peδ(s+1) ≤ C2r
−1.

In total, these errors can be bounded by C3r
−1.

There is an additional error arising due to the interpolation (we focus only
on the left end as the right end follows from a reflected estimate):

β(s)Nr(z) + (1− β(s))(u(z) + Γ(y0, y1)),

Since Nr(z) and u(z) both solve the equation (which is the standard ∂̄
equation in the cut-off region), this produces an error of C0 size:

|u(z) + Γ(y0, y1)−Nr(z)|+ C4r
−1,

where C4r
−1 is due to the fact that Γ(y0, y1) has C

1 size bounded by r−1.
We use that β′(s) is approximately 1 to avoid introducing another constant.

Then we estimate |u(z) + Γ(y0, y1)−Nr(z)| in the region s ∈ [−r− 1,−r] by:

|u(z)− p−|+ |p− −Nr(z)|+ |Γ(y0, y1)| ≤ C−e
−πs + C5r

−1.

The bound on the first and the last term is clear from the cosntruction. Let us
expand a bit why is |p−−Nr(z)| bounded in terms of r−1. First note that |iq0|
is bounded in terms of r−1 since the distance between y0 and x0 is controled
by r−1, and A0(·, 0) is a smoot map, hence q0 − 0 = A0(y0, 0)−A0(x0, 0) is
controled by r−1 as well. Secondly, since s ∈ [−r−1,−r], we have that |r+z| is
bounded by

√
2 and |p−−2r−1((r−z)p−+(r+z)p+)| = |2r−1(r+z)(p+−p−)|.

The contribution to the Lp,w size can be estimated by:

e+δsC−e
−πs + e+δsC5r

−1.

Combining with the earlier estimate, we conclude:

∥F (y0, y1,PGs,r(x0, x1, u))∥Lp,w ≤ (C− + C+)e
−(π−δ)s + Csr

−1,

where Cs = (C3 + 2e+δs(C4 + C5)), where we take into account the reflected
estimate at the right end. This completes the proof. □

In the rest of the argument, one should imagine that first s is chosen large
enough, and then, r is chosen in terms of s.

4.4.9. Linearization framework for the preglued solutions. In this section we
are concerned with step (2) of the gluing argument outlined above. The ideas
are similar to those in §4.4.7; we will linearize the equation at the preglued
solution producing a linearized operator. Then we will show this linearized
operator is uniformly surjective as R→ ∞, provided the parameters s, r are
chosen sufficiently large.

Let us abbreviate (y0, y1, us,r) = PGs,r(x0, x1, u). Using the Riemannian
metric gx0 as in §4.4.7, one can associate to each variation of us,r a nearby
map, and by the usual procedure of differentiating the equation, obtain a
linearized operator Dy0,y1,us,r . As in §4.4.7, Dy0,y1,us,r agrees with ∂̄ on the
neck region.
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The space of variations of (y0, y1, us,r) we will work with is:

Rn ⊕ TP0 ⊕ TP1 ⊕W 1,p,w,

where:

(1) TP0, TP1 account for variations w0, w1 based at y0, y1; these poten-
tially move the boundary conditions,

(2) Rn is a space of variations v which are real-valued and constant on
the neck, similarly to the space of variations Rn ⊕ Rn used in §4.4.7,

(3) W 1,p,w are variations of uR which are tangent to the boundary con-
ditions and lie in the weighted Sobolev space.

It is convenient to split the short-exact sequence:

0 → TP∞ → TP0 ⊕ TP1 → Rn → 0,

using the slice V , where the right map is the difference of the derivatives
yi 7→ Ai(yi, 0); see §4.4.6 for the definition of V . With this splitting chosen,
the space of variations is identified with:

Rn ⊕ TP∞ ⊕ Rn ⊕W 1,p,w.

We will reuse the notation from §4.4.7 as much as possible. First, for each
v ∈ Rn, let Φ(v) be a function which is constant and equal to v ∈ Rn×{0} in
the neck region and “agrees” with Φ−(v) and Φ+(v) outside of the neck region.
Here “agrees” should be interpreted up to the identification of variations
of u with variations of uR outside of the neck region (which appeals to a
parallel transport map).

Second, for each w ∈ TP∞, let Ψ(w) be a variation which is constant and
imaginary in the neck region, and “agrees” with the old Ψ(w) outside of the
neck region.

Next, for µ0, µ1 ∈ Rn, let k(µ0, µ1) : [−r− 1, r+ 1]× [0, 1] → Cn be given by:

k(µ0, µ1) = 2r−1iµ0 + 2r−1((r− z)µ0 + (r+ z)µ1).

This has boundary conditions on Rn × 2r−1µ0 and Rn × 2r−1µ1.

For r large enough, (2r−1µ0, 2r
−1µ1) lies in the image of the derivatives

of (A0(−, 0), A1(−, 0)) restricted to the slice V . Such pairs are uniquely
determined by the difference vector µ = µ1 − µ0 ∈ Rn, and given such
a pair we can find a variation γ(µ0, µ1) by differentiating Γ(y0, y1) in the
direction of a vector tangent to V . Then γ(µ0, µ1) has C

1 size controlled by
2r−1|µ1 − µ0|, and, by construction, k(µ0, µ1) and γ(µ0, µ1) have the same
imaginary parts along the boundary. Then we define K(µ) to be k(µ0, µ1)
on the neck of modulus 2r, the linear interpolation between k(µ0, µ1) and
γ(µ0, µ1) on the the cut-off region (using the cut-off functions β(s), β(−s)),
and γ(µ0, µ1) everywhere else.

It suffices to say that the linearized operator takes the form:

(26) (v, w, µ, ξ) 7→ Dy0,y1,us,r(Φ(v) + Ψ(w) + K(µ) + ξ) ∈ Lp,w.

We will now argue that this linearized operator is uniformly surjective.
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Lemma 72. For any η ∈ Lp,w, there exists (v, w, µ, ξ) so that:

Dy0,y1,us,r(Φ(v) + Ψ(w) + K(µ) + ξ) = η,

and:
|v|+ |w|+ |µ|+ ∥ξ∥W 1,p,w ≤ Clin ∥η∥ ,

where Clin is independent of η, ρ, s, r or the original solution (x0, x1, u), pro-
vided r is large enough.

Proof. Divide the neck [−r, r] into two regions [−r, 0] ∪ [0, r] and introduce
two cut-off functions:

(1) f−(s) = β(1− s/r),
(2) f+(s) = β(1 + s/r),

The key is that f− is 1 on the left region, and cuts off in the right region,
while f+ cuts off in the left region, and is 1 on the right region. Another key
is that the derivative of f± is O(r−1).

We define two maps. First: R : Lp,w → Lp,δ as an extension by zero map; this
is illustrated in Figure 18. Modulo the small change in sizes due to parallel
transport (taking variations of us,r to u), this function is norm preserving by

virtue of how the weights are defined. Second we define L : Lp,δ → Lp,w using
the cut-off functions f−, f+ as shown in Figure 19. The L map is almost
norm preserving (due to how the weights are defined), and only increases
norms slightly.

Let us observe that L ◦R = id, and moreover L maps W 1,p,δ into W 1,p,w in
an approximately norm preserving way.

We argue as follows: given η ∈ Lp,w, we can find v−, v+, w, ξ so that:

Dx0,x1,u(Φ−(v−) + Φ+(v+) + Ψ(w) + ξ) = R(η),

where |v−|+ |v+|+ |w|+ ∥ξ∥W 1,p,δ ≤ C∞ ∥η∥Lp,w , using the assumed surjec-
tivity of the linearized operator for the genuine solution (x0, x1, u).

Pick µ and v so that:

(27) v + µ0 = v− and v + µ1 = v+,

so that µ = v+ − v−. We then claim that:

Dy0,y1,us,r(Φ(v) + Ψ(w) + K(µ) + L(ξ)) = η +O(r−1) ∥η∥ .
Indeed, K(µ) + Φ(v) is close to Φ−(v−) and Φ+(v+) on the cut-off regions,
and the difference between ∂̄(K(µ) +Φ(v)) and ∂̄(Φ±(v±)) is a small error of
order r−1|µ|, using equation (27) and the fact γ(µ0, µ1) has C

1 size controlled
by r−1|µ|.
On the inner neck, the only contribution is ∂̄L(ξ) which is approximately
η = L(R(η)) up to an error O(r−1) ∥η∥, due to derivatives of f+, f−.

The only other errors are due to the parallel transport, but this is of order
O(r−1) ∥η∥, since the distance of curves we need to parallel transport along
is O(r−1) (noting that parallel transport acts identically in the neck).

Thus we can solve the equation up to an error of O(r−1) ∥η∥. Provided
O(r−1) < 1/2, we can then solve the equation by an iterative process, as is
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common in solving linear equations in Banach spaces. The result gives an
inverse image whose norm is uniformly bounded in terms of the input norm
∥η∥ by some constant Clin. □

2R

η η ηη

η 0 0η

0 η η0

Figure 18. Extension by zero map R; this goes from de-
formations of the preglued map uR to deformations of the
original map u.

f−η− + f+η+ ηη

η−η

η+ η

Figure 19. Partition of unity map L; this goes from defor-
mations of u to deformations of uR.

As a consequence of this result, and the previous result Lemma 71, one
concludes by the usual application of the inverse function theorem in Banach
spaces that there are indeed genuine solutions of M(R) close to the preglued
solutions, provided the parameter s is large, and r is chosen much larger
than s, so that the failure of the preglued solution to solve the equation is
small enough (see Lemma 71).

Moreover, these genuine solutions are cut transversally, because the lineariza-
tion at the preglued solutions is uniformly surjective. The solutions are rigid
in M(R) as can be deduced by the index formula together with the above
uniform surjectivity. Let us denote this genuine solution by Gs,r(x0, x1, u).
This rigidity leads to the following conclusion:

Lemma 73. Let s0 ≥ 0 be a constant, and let P (s) be such that r ≥ P (s) and
s ≥ s0 implies that the gluing argument applied to PGs,r(x0, x1, u) converges
to a genuine solution Gs,r(x0, x1, u) (this requires r to be large enough for the
linearized operator to be uniformly surjective, and then the error in Lemma
71 to be small enough). Now suppose that s(τ), r(τ) varies continuously and
so that:

(1) s(τ) ≥ s0 and r(τ) ≥ P (s(τ)) for all τ ,
(2) s(τ) + r(τ) = s(0) + r(0),

then Gs(τ),r(τ)(x0, x1, u) = Gs(0),r(0)(x0, x1, u). In particular, the glued solu-
tion in M(R) is Gs,R−s, provided s ≥ s0 and R ≥ s+ P (s).
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Proof. This follows from the rigidity of the solutions, and the fact the
pregluing construction is continuous with respect to variations of s and r. □

This completes part (2) of the gluing argument. In the next and final
subsection, we will complete step (3) of the gluing argument.

4.4.10. Compactness for ends of M. Suppose that (Rn, x
n
0 , x

n
1 , un) is a se-

quence of genuine solutions inM, with Rn → ∞. To complete the gluing argu-
ment, we need to show that (after passing to a subsequence) (Rn, x

n
0 , x

n
1 , un)

eventually equals the glued solution Gs,rn(x0, x1, u), where rn = Rn − s, and
(x0, x1, u) is an appropriate Gromov limit of (xn0 , x

n
1 , un).

First, pick the subsequence so that (xn0 , x
n
1 ) converge to a limit (x0, x1). For

later use, let us suppose the subsequence is such that xn0 is in the ball B(ϵ)
around x0. After passing to a further subsequence, the restriction of un to the
neck [−Rn, Rn] converges on compact subsets to a limiting holomorphic strip
with boundary on cotangent fibers T ∗MA0(x0,0) and T

∗MA1(x1,0). Since this
limiting holomorphic strip has bounded energy (by Fatou’s lemma), it must be
that T ∗MA0(x0,0) = T ∗MA1(x1,0), otherwise no such finite energy holomorphic
strip exists. Thus we conclude A0(x0, 0) = A1(x1, 0), so (x0, x1) ∈ P∞.

By passing to yet a further sequence, standard elliptic regularity and Floer
theory compactness results imply that un converges on compact subsets of the
limiting domain Σ(∞) to a smooth map u — here we use the identification of
the surfaces with sufficiently deep ends/necks removed, so that any compact
subset of Σ(∞) eventually is identified with a compact subset of Σ(Rn).

Let (x̄n0 , x̄
n
1 , ūn) = Gs,rn(x0, x1, u). It is sufficient to prove there is a variation

of (x̄n0 , x̄
n
1 , ūn) of small norm which equals (xn0 , x

n
1 , un) after applying the

Riemannian exponential map, as then we can appeal to the rigidity of the
glued solution to conclude (x̄n0 , x̄

n
1 , ūn) = (xn0 , x

n
1 , un).

It is clear from the construction that (x̄n0 , x̄
n
1 , ūn) also converges to (x0, x1, u)

as n→ ∞, in the same manner that (xn0 , x
n
1 , un) does.

In particular, the restrictions of ūn, un to [−rn, rn]× [0, 1] are both holomor-
phic strips whose endpoints are eventually within the C±e

−πs neighborhoods
of p±, since the limit (x0, x1, u) has its endpoints within this neighborhood,
as explained in §4.4.8.
Let us abbreviate by qn0 , q

n
1 and q̄n0 , q̄

n
1 the imaginary parts of the boundary

components of un and ūn. Then we estimate:

Lemma 74. It holds that:

rn|(qn1 − qn0 )− (q̄n1 − q̄n0 )| ≤ (C− + C+)e
−πs.

Proof. Let U = un − ūn, restricted to [−rn, rn]× [0, 1]. Let q(s, t), p(s, t) be
the coordinate projections of U to Rn ×B(1). Then:

∂sp = ∂tq =⇒ 2rn((q
n
1 − qn0 )− (q̄n1 − q̄n0 )) =

∫ 1

0
p(rn, t)− p(−rn, t)dt

Using that U has its s = ±rn boundary component in the 2C±e
−πs neigh-

borhood of 0, we conclude the desired result. □
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Next, we recall from §4.4.9 that there is a variation K(µn) associated to
µn ∈ Rn whose restriction to [−rn, rn]× [0, 1] equals:

2r−1
n iµn,0 + 2r−1

n (µn,0(z + rn) + µn,1(rn − z)),

and which has a C1 distance controlled by r−1
n (µn,1 − µn,0) outside of the

neck [−rn, rn]× [0, 1]. Let us “add” this variation to (x̄n0 , x̄
n
1 , ūn) (using the

Riemannian exponential map) so that:

2r−1
n (µn,1 − µn,0) = qn1 − qn0 − (q̄n1 − q̄n0 ).

Then it holds that:
un − (ūn +K(µn))

has boundary conditions on a single cotangent fiber. Moreover, Lemma 74
|µn| is controlled by 2−1(C− + C+)e

−πs. It then follows that:

∥un − (ūn +K(µn))∥W 1,p,w ≤ O(r−1
n eδs) +O(eδsdists(un, ūn))

where dists is the C
1 distance computed on the complement of [−rn, rn]×[0, 1].

To see this, one uses:

(1) the aforementioned bound of the C1 size K(µn) on the complement
of [−rn, rn]× [0, 1],

(2) the fact the W 1,p,w distance on the complement of [−rn, rn]× [0, 1]
is bounded by eδs times the usual C1 distance, and

(3) un − (ūn +K(µ)) is holomorphic on [−rn, rn]× [0, 1], with boundary
on a single cotangent fiber, and therefore the W 1,p,w size on this neck
is bounded by the C1 size at the endpoints.

Thus we conclude that:

un = ūn +K(µn) + ξn

where ∥ξn∥W 1,p,w = O(r−1
n eδs)+O(eδsdists(un, ūn)). In particular, by taking n

large enough, we can make ∥ξn∥W 1,p,w+ |µn| as small as desired. In particular,
(x0, x1, un) enters arbitrarily small neighborhoods of (x̄n0 , x̄

n
1 , ūn) in the correct

topology for the uniform surjectivity of the linearized operator to be applied.
By the rigidity of the glued solution, it follows that (x0, x1, un) = (x̄n0 , x̄

n
1 , ūn),

as desired.

This completes the proof that the count of non-compact ends of M equals
the count of rigid solutions of M(∞). □
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