
ON THE RIGIDITY OF TRANSLATED POINTS

DYLAN CANT AND JAKOB HEDICKE

Abstract. We show that there exist contact isotopies of the stan-
dard contact sphere whose time-1 maps do not have any translated
points which are optimally close to the identity in the Shelukhin-
Hofer distance. This proves the sharpness of a theorem of Shelukhin
on the existence of translated points for contact isotopies of Liou-
ville fillable contact manifolds with small enough Shelukhin-Hofer
norm.

1. Introduction

A translated point is a contact analogue of a fixed point due to Sandon;
see [San11a, San11b, San12, San13]. Briefly, a translated point of a
contactomorphism ψ, relative a contact form α, is a point x ∈ Σ such
that x and ψ(x) lie on the same trajectory of the Reeb vector field Rα,
where Σ = {x : (ψ∗α)x = αx} is the set where the scaling factor is 1,
and Rα is the vector field satisfying α(Rα) = 1 and dα(Rα,−) = 0.

Translated points are amenable to study using symplectic techniques
such as generating functions, Floer theory, and other variational prin-
ciples; see, e.g., [Giv90, Giv91, AF10, AM13, She17, MU19, GKPS21,
Oh21, Oh22, All22b, All22a, AA23, DUZ23, Can23].

One should think of translated points as having similar rigidity to La-
grangian intersections or Reeb chords between Legendrians: provided
the contactomorphism ψ is close enough to the identity map, translated
points of ψ must exist, but they can disappear for sufficiently large de-
formations. Indeed, the [She17, Theorem B] makes this precise:

If ψ is the time-1 map of a contact isotopy and α is a choice of contact
form on the ideal boundary of a Liouville manifold, and:

(1) 2 inf
s∈R

distα(ψ,R
α
s ) < minimal length of a closed α-Reeb orbit,

then ψ has a translated point relative the contact form α.

Here the distance is the Shelukhin-Hofer distance for contactomor-
phisms introduced in [She17], whose definition is reviewed in §1.1. The
left hand side in (1) is known as the α-oscillation norm of ψ.
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See also [Oh22] for a proof of this result when Y is not assumed to be
Liouville fillable.

Our main result is a non-existence result for translated points, and it
proves that Shelukhin’s result is optimal in that it cannot be improved
without further hypotheses; see §1.2 for further discussion.

Theorem 1. For any ϵ > 0, there exist contact isotopies ψt of S
2n+1,

n ≥ 1, with its standard contact structure, whose time-1 maps have
no translated points relative the standard contact form α, and which
satisfy:

2 inf
s∈R

distα(ψ1, R
α
s ) < 1 + ϵ;

note that 1 is the minimal period of a closed Reeb orbit for the standard
contact form.

The construction of ψt is as a composition ψt = κtγt where:

(1) γt is a specific focusing1 contact isotopy whose scaling-factor-1
set Σ concentrates near a single point ζ on S2n+1 and whose
image γ1(Σ) is arbitrarily close to the antipodal point −ζ, and

(2) κt is a strict contact isotopy which displaces −ζ from the Reeb
orbit through ζ.

The goal of this paper is to show that this can be done in such a way
that ψt has length at most (1 + ϵ)/2, and ψ1 has no translated points.
It then follows that ψt has oscillation energy at most 1 + ϵ, as desired.

1.1. Shelukhin-Hofer distance. The following pseudo-distance between
contactomorphisms (in the universal cover) was introduced in [She17];
given contact isotopies2 ψ0,t, ψ1,t, define:

distα(ψ0,t, ψ1,t) := inf lengthα(ψs,1),

where the infimum is over all squares3 ψs,t in the contactomorphism
group extending ψi,t, i = 0, 1 and satisfying ψs,0 = id. The length of
the path ψs,1 is defined by the formula:

lengthα(ψs,1) :=

∫ 1

0

max
y∈Y

∣∣αψs,1(y)(∂sψs,1(y))
∣∣ ds;

1The construction is related to [Can24] which uses a different a focusing isotopy.
2Note that isotopies ψt are supposed to satisfy ψ0 = id.
3The image of such a square appears as a triangle since ψs,0 = id holds for all s.
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we note that if ∂sψs,1 = Vs(ψs,1), then the maximum in the integrand is
also the maximum of the s-dependent contact Hamiltonian4 αy(Vs(y)).
Because we infimize over squares, but only measure the distance along
the top edge of the square, the pseudo-distance should be considered
as being defined on the universal cover (considered here as a quotient
space of the contact isotopy group). As usual, the Shelukhin-Hofer
norm of an isotopy ψt is its Shelukhin-Hofer distance to the identity.

1.2. On the factor of two. There is a difference of conventions between
the Hofer norms used in [AF10] and [She17] which has the result of
changing certain expressions by a factor of two. With the conventions
in §1.1, [She17, Conjecture 31] is equivalent to: if ψt is a contact isotopy
whose α-Shelukhin-Hofer oscillation norm is less than ρ(α) then ψ1

has translated points. Here we follow [She17] and denote the minimal
length of a closed α-Reeb orbit by the symbol ρ(α).

Our construction in Theorem 1, and the fact that the above conjecture
is known to hold on the standard contact sphere (see [She17, Oh22,
Can23]), proves that this statement of the conjecture is sharp, i.e.,
cannot be improved without further hypotheses.

1.2.1. Translated chains. In the final section §2.5, we explain why our
construction also has no translated chains, as defined in [FSZ23].

Recall that a translated chain of a contactomorphism ψ of order k ∈ N,
relative a contact form α, is a point x so that:

(Rα
sψ)

k(x) = x and (((Rα
sψ)

k)∗α)x = αx,

for some s ∈ R. In other words, x is a fixed point of the kth iterate of
the contactomorphism Rα

sψ, and the scaling factor of the kth iterate
at x is 1. We prove that:

Theorem 2. There exist contact isotopies ψt of the standard contact
sphere with lengthα(ψt) ≤ 1/2 + ϵ, and so ψ1 has no translated chains
with respect to the standard contact form α.

1.3. Acknowledgements. The authors wish to thank Egor Shelukhin
for his valuable guidance during the preparation of this paper, and to
Yong-Geun Oh for insightful comments on an early draft of the paper.
The authors were supported in their research at Université de Montréal
by funding from the Fondation Courtois. The first named author was

4An essential feature of contact geometry is the isomorphism V 7→ α(V ) between
contact vector fields X and smooth functions. The function α(V ) is called the
contact Hamiltonian, see e.g. [Gei08, Section 2.3] for further details.
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also supported in his research at the Institut de mathématique d’Orsay
by funding from the ANR project CoSy.

2. Construction of the contact isotopy

As explained above, the construction of the contact isotopy ψt is as a
composition ψt = κtγt. The contact isotopy γt is a cut-off version of the
contact isotopy generated by a height function on the sphere. As we
will see below, height functions on spheres generate contact isotopies
which are focusing, in the sense that they have two fixed points, one of
which is attracting and one of which is repelling. The results of §2.1
and §2.2 are concerned with the analysis of these contact isotopies. It
is important for our argument that we have an explicit description of
the scaling-factor-1 set for such contact isotopies.

The contact isotopy generated by a height function has an unbounded
Shelukhin-Hofer length, and so it will be necessary to cut-off the iso-
topy. The bulk of the argument is concerned with the cut-off operation,
especially how it affects the scaling-factor-1 set. This part of the paper
occupies §2.3.
The proof is completed in §2.4 where we construct the displacing iso-
topy κt and show that ψt = κtγt has a time-1 map without translated
points and a small enough Shelukhin-Hofer length.

2.1. A special contact vector field on the sphere. Consider R2n+2 with
coordinates (p, q, x1, y1, . . . , xn, yn) and the Liouville form:

λ =
1

2
(pdq − qdp) +

1

2

n∑
i=1

(xidyi − yidxi).

Let B(r) =
{
π |z|2 = r

}
be the ball of symplectic capacity r. A special

role is played by the sphere ∂B(1) since λ restricts to the standard con-
tact form whose Reeb flow is 1-periodic. We will consider the following
vector fields tangent to ∂B(1):

1

2π
R = p

∂

∂q
− q

∂

∂p
+

n∑
i=1

xi
∂

∂yi
− yi

∂

∂xi
,

1

2π
Fi = p

∂

∂xi
− xi

∂

∂p
+ yi

∂

∂q
− q

∂

∂yi
,

1

2π
JFi = p

∂

∂yi
− yi

∂

∂p
+ q

∂

∂xi
− xi

∂

∂q
,
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where J is the standard complex structure on R2n+2. Then R is the
Reeb vector field and Fi, JFi, i = 1, . . . , n, span the standard contact
distribution (the plane of complex tangencies).

Introduce the vector field:

V =
1

2

n∑
i=1

(yiFi − xiJFi).

This is not a contact vector field, and it is tangent to the contact
distribution of ∂B(1).

Lemma 3. The vector field:

X = pR + V

is a contact vector field on ∂B(r); indeed:

d(λ(X)) + dλ(X,−) = −2πqλ.

The restriction of X to ∂B(1) has contact Hamiltonian equal to p.

We recall that the contact Hamiltonian of a contact vector field X on
(Y, α) is simply the function α(X); see, e.g., [Gei08, Section 2.3]. In
our case, Y = ∂B(1) and the contact form is the pullback α = λ|∂B(1).

Proof. By equivariance under rescaling, it suffices to prove the lemma
on the sphere ∂B(1) bounding the ball of capacity 1. In this case,
λ(X) = p, and hence one needs to show that dp + dλ(X,−) = −2πqλ
holds on ∂B(1). We do the computation in R4, although the general
case follows the same exact computation. Alternatively, one can think
of x, y as being vector valued coordinates.

One computes:

dλ(X,−) = π(pydy − y2dp+ qydx+ pxdx− qxdy − x2dp).

Using π(p2 + q2 + x2 + y2) = 1 we have:

dp+ dλ(X,−) = π(pydy + qydx+ pxdx− qxdy + p2dp+ q2dp).

Finally, using pdp+ qdq + ydy + xdx = 0 we have:

dp+ dλ(X,−) = −πq(pdq − qdp+ xdy − ydx) = −2πqλ.

Thus the desired formula holds. □

2.2. Projection to the p, q plane. We will abuse notation and refer to
vector fields on D(1) = {π(p2 + q2) ≤ 1} by the symbols:

R = 2π(p∂q − q∂p),

V = (1− πp2 − πq2)∂q,

X = pR + V ;



6 DYLAN CANT AND JAKOB HEDICKE

this is justified because R, V,X are related5 to the vector fields consid-
ered in §2.1 under the projection ∂B(1) → D(1).

2.2.1. An integral estimate. One computes:

(2)

{
dp(X) = −2πpq,

dq(X) = 1 + π(p2 − q2),

so that the vertical line p = 0 is an invariant set. We will give an exact
solution of this flow in §2.2.2. It follows from (2) that:

(3)
pdq(X)− qdp(X)

2π(p2 + q2)
=
p(1 + π(p2 + q2))

2π(p2 + q2)
.

The left hand side is 1
2π
dθ(X) where dθ is the closed differential form

on C× which measures winding angles around zero, and hence, for any
flow line z : R → {p > 0} for the vector field X, we have:∫ ∞

−∞
p(z(t)) ≤ 1

2π

∫ ∞

−∞
dθz(t)(X(z(t)))dt ≤ 1

2
.

We have used (1 + τ)/(2τ) ≥ 1 for τ = π(p2 + q2), (3), and that the
integral of z∗dθ is the total angle traced out by the flow line which is
bounded from above by π.

Remark. Since p is the contact Hamiltonian for the contact vector field
X, the above estimate is related to the Shelukhin-Hofer length of the
isotopy defined in §1.1. We will use this result in §2.3.4.

2.2.2. Exact solution of the flow. If one sets z = p+ iq, then the flow
lines of X satisfy:

(4) z′ = iπz2 + i,

whose time t flow is a biholomorphism of the disk. Moreover, if one
introduces a new coordinate w ∈ R × [0, π], and uses the following
biholomorphism from the strip to the disk:

(5) z =
iew + 1√
π(ew + i)

,

then a computation yields:

z′ =
−2ew√
π(ew + i)2

w′ and iπz2 + i =
−4ew

(ew + i)2
.

In particular, the ODE (4) reduces to the ODE w′ = 2
√
π.

5Here we recall that V1 is related to V2 under a map f if V2 ◦ f = df ◦V1. If this
holds, then f maps integral curves of V1 to integral curves of V2.



ON THE RIGIDITY OF TRANSLATED POINTS 7

2.2.3. Determining where the scaling factor is 1. This description of
the flow gives a nice characterization of the set where the scaling ex-
ponent g for the time T flow φT is zero (here φ∗

Tα = egα). This set is
the inverse image of its projection to the p, q plane since:

g(p, q, x, y) = −2π

∫ T

0

q ◦ φt(p, q, x, y)dt,

and q ◦ φt(p, q, x, y) can be determined using the solution to (4). To
deduce this formula, we differentiate φ∗

tα = egtα with respect to t,
using Cartan’s formula, and conclude that g = gT is the integral of
d(α(X))(R) ◦ φt over the interval [0, T ]; see also [Gei08, Section 2.3.2]
for a general formula for the scaling factor of a contact flow.

Let us denote this projection by C. Writing z = p+ iq, and w = a+ ib
we have:

√
πz =

iew+w̄ + ew + ew̄ − i

ew+w̄ + 1 + ew̄i− ewi
=⇒

√
πq =

e2a − 1

e2a + 1 + 2ea sin(b)
.

In particular, we conclude that:

z(a+ ib) ∈ C ⇐⇒
∫ a+2

√
πT

a

e2τ − 1

e2τ + 1 + 2eτ sin(b)
dτ = 0.

This integral can be solved explicitly since:

d

dτ
(ln(2 sin(b)eτ + e2τ + 1)− τ) =

e2τ − 1

e2τ + 1 + 2eτ sin(b)
;

with a small computation one obtains:

C =
{
z = z(a+ ib) : a = −

√
πT and b ∈ [0, π]

}
.

Since w′ = 2
√
π, one sees that φt(C) is always a circular arc orthogonal

to the boundary, φT/2(C) is the horizontal line q = 0, and φT (C) is the
reflection of C under the line q = 0.

Figure 1. The regions separated by C. One sees C is
a circular arc orthogonal to the boundary of the disk.
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2.3. The cut-off flow. For any function f : R → R, introduce the cut-
off version:

Xf := f(p)R + f ′(p)V,

where V denotes the vector field introduced in section 2.1. A direct
computation shows that d(f(p))+dα(Xf ,−) = −2πqf ′(p)α; this com-
putation shows that Xf is a contact vector field on ∂B(1). By abuse
of notation, we also denote the projection to D(1) by Xf .

2.3.1. Equivariance under reflection. The flow of f(p)R + f ′(p)V is
equivariant with respect to the reflection through the line p = 0 pro-
vided that f(−p) = −f(p).
For this reason we will always assume that f is an odd function such
that f(p) = p holds for p near 0; when we define f : [0, π−1/2] → R we
implicitly extend f to be an odd function on [−π−1/2, π1/2].

Thus it is sufficient to analyze the dynamics in the right half {p ≥ 0}.
We will therefore assume that all trajectories lie in {p ≥ 0} unless oth-
erwise stated.

2.3.2. The Shelukhin-Hofer length. Our construction outlined in §2 is
a time-dependent contact isotopy generated by:

Xt = ft(p)R + f ′
t(p)V,

where ft is a family of odd functions, for t ∈ [0, T ]. It is clear that the
Shelukhin-Hofer length of this isotopy can be computed exactly as:

lengthα =

∫ T

0

max ft(p)dt.

2.3.3. Discontinuous degeneration of the cut-off vector field. For a given
number η ∈ [0, π−1/2], consider:

fδ,η(p) = η + δ − δµ(δ−1(η − p+ δ)),

where µ is a convex function so that µ(x) = x for x ≥ 1 and µ(x) = 1/2
for x ≤ 0.

p = ηp = −η

Figure 2. The function fδ,η is a smoothed out version
of the above piecewise linear function.
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By construction we have (always assuming p ≥ 0):

(6) fδ,η(p) =

{
p for p ≤ η,

η + δ/2 for p ≥ η + δ,

Notice that limδ→0Xfδ,η converges pointwise to:

Xη =

{
pR + V for p ≤ η,

ηR for p > η,

This limit vector field is not continuous; however, it is continuous along
the boundary, since V vanishes on the boundary.

2.3.4. The time-dependent cut-off flow. Fix a sequence δn → 0, and
let z : [0, T ] → ∂D(1) be an integral curve for the flow of X = pR+V ,
in the region where p > 0. Let η(t) = p(z(t)). The time dependent
contact Hamiltonian fn,t(p) = fδn,η(t)(p) defines a sequence of contact
vector fields Xn,t as in §2.3.3. Let φn,t be the resulting time-dependent
isotopy (not to be confused with the original flow φt).

The length of φn,t is bounded by:

lengthα(φn,t) ≤
1 + δnT

2
,

where we have used the bound on the length in §2.3.2, and the fact:

max fδn,η(t)(p) = η(t) + δn/2,

together with the integral estimate from §2.2.1:∫ T

0

η(t)dt =

∫ T

0

p(z(t))dt ≤ 1

2
.

It is very important that the length of φn,t converges to 1/2 as n→ ∞.

As in §2.3.3, we will also refer to the pointwise limit:

Xt = lim
n→∞

Xn,t.

The limit is uniform on compact subsets of {(t, u) : p(u) ̸= η(t)}.

2.3.5. Set of piecewise trajectories. Introduce the set M(z) of contin-
uous maps u : [0, T ] → D(1) ∩ {p ≥ 0} so that:

(M1) p(u(t)) = η(t) holds for finitely many values of t, or u(t) = z(t)
holds identically,

(M2) on the open set where p(u(t)) ̸= η(t), u is a flow line for the
limit flow Xt,

where z : [0, T ] → ∂D(1) is a flow line as in §2.3.4. It is clear that u
is smooth on the open set in (M2). Let us call the finite set of times
where p(u(t)) = η(t) crossing times.
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Lemma 4. Each u ∈ M(z), u ̸= z, has either zero or one crossing time.

Proof. If u(t∗) = z(t∗) holds for some time t∗ then since u(t) and z(t)
solve the same ODE on [t∗, t∗ + δ) and on (t∗ − δ, t∗], by (M2), we can
conclude by uniqueness that u(t) = z(t) holds identically. Thus we
may suppose that u(t) ̸= z(t) for all times t.

Suppose there is a time t∗ so that p(u(t∗)) = η(t∗). One computes a
two-sided derivative:

∂

∂t

∣∣∣∣
t=t∗

p(u(t))− η(t) = 2πη(t∗)(q(z(t∗))− q(u(t∗))).

In particular, if z(t∗) is on the lower half of the circle {q < 0}, then the
difference q(z(t))−q(u(t)) is negative and so the relative p-coordinate is
decreasing; this means that u(t) lies where p(u(t)) < η(t) for t slightly
larger than t∗. Such crossings are shown on the left of Figure 3; let
us call such crossings entrances. The other type of crossing, called an
exit, is when z(t∗) is on the upper half of the circle {q > 0} and the
same argument shows that p(u(t)) > η(t) for t slightly larger than t∗;
see the right side of Figure 3.

It therefore follows that one cannot have an entrance followed by an
entrance, or an exit followed by an exit.

z

u

u

z

Figure 3. In the scenario on the right, u enters the
region where the flow in pR+ V ; on the left, u exits this
region. The dashed arc is denoted by C(t).

A topological argument shows that one cannot have an exit followed by
an entrance or vice-versa. One considers the circular arc C(t) passing
through z(t) orthogonal to ∂D(1); see the dashed arc in Figure 3. By
the dynamics of pR + V , each flow line of Xη which starts on C(0)
remains on C(t) for all times. A flow line which does not begin on
C(0) can never cross C(t); thus if u starts on top of C(0), then u can
enter but never exit, while if u starts below C(0) then u can exit but
never enter. Thus we have proved there is at most one crossing time;
we note that it is possible for a trajectory to never enter or exit. □
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2.3.6. Scaling factor for the piecewise flow. Let z : [0, T ] → ∂D(1) be
a boundary trajectory of X = pR + V , as above. For each u ∈ M(z),
introduce the scaling exponent :

g(u) = −2π

∫ t2

t1

q(u(t))dt,

where [t1, t2] ⊂ [0, T ] is the maximal interval so that p(u(t)) ≤ η(t)
holds for all t ∈ [t1, t2].

Let us now suppose that q(z(T/2)) = 0. By the analysis in §2.2.3, it
follows that g(z) = 0; moreover, g(u) = 0 holds for every trajectory u
so that u(t) ∈ C(t) for all times t. The converse also holds:

Lemma 5. In the above setting, g(u) = 0 if and only if u(t) lies on the
circular arc orthogonal to ∂D(1) through z(t).

Bear in mind that u(t), z(t) remain in {p > 0}, as explained in §2.3.1.

Proof. Because q(z(T/2)) = 0 it follows that p(z(T/2)) = π−1/2 and
hence every u ∈ M(z) must satisfy p(u(t)) ≤ p(z(t)) for some t. In
particular, a trajectory can either:

(1) start with p(u(0)) ≥ p(z(0)) and enter later on,
(2) start with p(u(0)) ≤ p(z(0)) and exit later on, or
(3) satisfy p(u(t)) ≤ p(z(t)) for all t ∈ [0, T ].

Let us suppose that u(t) is not on the circular arc through z(t). In
cases (1) and (2), let t∗ be the time for which p(u(t∗)) = p(z(t∗)).

In case (1), we have that t∗ < T/2 and:

g(u) = −2π

∫ T

t∗

q(u(t))dt.

On [t∗, T ], u is a flow line for pR + V . Since u(t∗) lies above C(t∗)
(because u(0) lies above C(0)) it follows that:

(7) g(u) < −2π

∫ T

t∗

q(v(t))dt,

where v : [0, T ] → D(1) is a trajectory for pR + V which starts on the
arc C(0); indeed, one picks the trajectory v so that v(t∗ + τ) = u(t∗)
holds for some τ > 0, and the analysis in §2.2.3 implies (7).

Since v(0) ∈ C(0), it holds that:

−2π

∫ T

t∗

q(v(t))dt ≤ 0,

indeed, the integral over [0, T ] is zero, and the contribution due to [0, t∗]
is non-negative since t∗ ≤ T/2. Therefore g(u) < 0, as desired.
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The argument in case (2) is similar. In this case the exit time satisfies
t∗ ≥ T/2, and:

g(u) = −2π

∫ t∗

0

q(u(t))dt > −2π

∫ t∗

0

q(v(t))dt ≥ 0,

for some trajectory v : [0, T ] → D(1) which starts on C(0).

Finally, for case (3) it follows immediately from §2.2.3 that g(u) ̸= 0,
since u is a flow-line for pR+V for all of [0, T ] and does not start on the
set where the scaling-exponent is zero, namely C(0). This completes
the proof. □

2.3.7. Limiting behaviour of the cut-off flow.

Lemma 6. A sequence of flow-lines un : [0, T ] → D(1) for Xn,t, as
defined in §2.3.4, has a subsequence which converges in the C0 topology
to a solution u ∈ M(z) as n→ ∞.

Proof. To begin, observe that the vector fields Xn,t(p, q) are uniformly
bounded for (p, q) ∈ D(1) and t ∈ [0, T ]. Therefore, by the Arzelà-
Ascoli theorem, un has a subsequence which converges in C0 to a lim-
iting continuous map u. It remains to show that u ∈ M(z).

Let Xt be the discontinuous limit of Xn,t as in §2.3.4.
First we claim the following: if u(t∗) ∈ ∂D(1) holds for some time t∗,
then u(t) ∈ ∂D(1) for all times t ∈ [0, T ]. The claim is proved by
proving a differential inequality for the function

ℓ(p, q) = 1− π(p2 + q2).

Indeed, along any flow line of Xn,t, we have:

dℓ(Xn,t) = f ′
n,t(p)dℓ(∂q)ℓ;

see §2.2. Since |f ′
n,t(p)| is bounded by 1 (by construction), and |dℓ(∂q)|

is bounded by some constant C, we have:∣∣ d
dt
ℓ
∣∣ ≤ Cℓ,

along any flow line. This differential inequality integrates to:

(8) ℓ(un(t)) ≤ eC|t−t∗|ℓ(un(t∗)).

Our claim then follows from (8) and the convergence of un to u.

Suppose that u(t∗) ∈ ∂D(1) holds for some time t∗. Given ϵ, there is a
small neighbourhood of (t∗, u(t∗)) in [0, T ]×D(1) so that:

|Xn,t(v)−Xt∗(u(t∗))| ≤ ϵ
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for n sufficiently large and (t, v) in this neighbourhood. This is because
the discontinuous term in Xt vanishes along the boundary; see §2.3.3.
Thus, for h small enough, we have:

u(t∗ + h)− u(t∗)

h
= lim

n→∞

∫ 1

0

Xn(un(t∗ + τh))dτ = Xt∗(u(t∗)) +O(ϵ),

and hence u is differentiable at t∗ and u
′(t∗) = Xt∗(u(t∗)). In particular,

if u(t∗) ∈ ∂D(1) for any time t∗, then either u(t) = z(t) for all times t
or u(t) ̸= z(t) for all times t. Thus we may suppose that u(t) ̸= z(t)
for every t ∈ [0, T ] (noting that if u(t) = z(t) holds for all t then (M1)
and (M2) are trivially satisfied).

To show (M1) we need to prove that p(u(t)) = η(t) holds for only
finitely many times t. To do so, we introduce the function:

En(t) = p(un(t))− η(t).

For any n, we have from (2) and (6) that:

d
dt
En(t) = Fn(t) := 2πq(z(t))η(t)− 2πq(un(t))fδn,η(t)(p(un(t))).

In the limit n → ∞ the right hand side converges uniformly to the
continuous function:

F (t) = 2πq(z(t))η(t)− 2πq(u(t))max {p(u(t)), η(t)} .

Since En(t) converges uniformly to the limit E(t) := p(u(t))− η(t) and
Fn(t) converges uniformly to F (t), it follows that E(t) is continuously
differentiable and E ′(t) = F (t). If E(t∗) = 0, it then holds that:

E ′(t∗) = 2πη(t)(q(z(t))− q(u(t))).

Since u(t∗) ̸= z(t∗) it holds that E ′(t∗) ̸= 0; in other words, the level
set {t : E(t) = 0} is transverse and is a finite set. This proves (M1).

The second property (M2) is established as follows. Pick a time t∗ so
that E(t∗) ̸= 0. By continuity, p(un(t)) remains a uniform distance
away from from η(t) for n large enough and for t in some interval
around t∗. Thus, for t near t∗, we may assume that (t, un(t)) lies in a
region of [0, T ]×D(1) where Xn,t converges uniformly to Xt. It follows
that the continuous limit u(t) is a flow-line for Xt away from the zero
set of E. Therefore property (M2) is satisfied, as desired. □

2.3.8. Scaling factor for the cut-off flow. In this section we analyze
the set where the cut-off flow has scaling factor equal to 1. The idea
is fairly simple: we will use the convergence result of §2.3.7 with §2.3.6
to prove that the cut-off flow has a scaling-factor-1-set which is well-
approximated by the circle C(0).
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Let Xn,t be the cut-off contact vector field and let φn,t be its contact
isotopy as in §2.3.4. We suppose that z : [0, T ] → ∂D(1) is chosen so
that q(z(T/2)) = 0. Then the circle C(t) passing through z(t) which
is orthogonal to ∂D(1) satisfies:

(1) C(0) is the scaling-factor-1 set for the original flow φt,
(2) C(t) = φt(C(0)) = φn,t(C(0)).

The fact that φt(C(0)) = φn,t(C(0)) holds because φt(C(0)) always
remains in the region where the cut-off vector field agrees with the
original vector field pR + V . The fact that C(t) = φt(C(0)) holds
because φt is a Möbius transformation of the disk, as shown in §2.2.2.
The goal in this section is to prove:

Lemma 7. For given T > 0 and ϵ > 0, the number n can be chosen
large enough that the scaling-factor-1 set Σn,T for φn,T is such that its
images φn,T (Σn,T ) are ϵ-close to C(T ).

Proof. Recall that φ∗
n,Tα = egn,Tα where:

gn,T (x) =

∫
d(fn,t(p))(R)dt =

∫
f ′
n,t(p)dp(R)dt = −2π

∫
f ′
n,t(p)qdt,

where the integral is along the flow line for Xn,t starting at x.

Let us argue by contradiction; if the images of the scaling-factor-1 set
do not concentrate near C(t) as n → ∞, then we can find a sequence
of flow lines un(t) so that un(t) becomes at least ϵ far from C(t) (for
some t) and so that gn,T (un(0)) = 0.

Using the result of §2.3.7, we can pass to a subsequence so that un
converges uniformly to a limit u ∈ M(z). It is clear that u ̸= z, and
hence u has an isolated crossing with the set p = η(t). For any ρ2 > 0,
there is 0 < ρ1 < ρ2 and an interval I of length ρ2 so that u(t) is ρ1 far
from {p = η(t)} outside I.

By the C0 convergence of un to u, it follows that un remains ρ1/2 far
from {p = η(t)} outside of I, for n large enough.

Observe that Fn(t, p) = −2πf ′
n,t(p)q converges uniformly to:

F (t, p) =

{− 2πq if p ≤ η(t)

0 if p > η(t)

on compact subsets of the complement of the locus {p = η(t)}. Since:

(t, un(t))

remains in such a compact set for t ̸∈ I (the compact set is the com-
plement of the ρ1/2 neighbourhood around {p = η(t)}) we conclude
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that:∫ T

0

|Fn(t, un(t))− F (t, u(t))| dt−
∫
I

|Fn(t, un(t))− F (t, u(t))| dt,

is o(1) as n → ∞. However, since Fn, F are bounded from above by a
constant (independently of n), we conclude that:∫ T

0

|Fn(t, un(t))− F (t, u(t))| dt = O(ρ2) + o(1) as n→ ∞,

where we use that |I| = ρ2. Since ρ2 was arbitrary, we conclude that

lim
n→∞

∫ T

0

|Fn(t, un(t))− F (t, u(t))| dt = 0.

In particular,
∫ T
0
F (t, u(t))dt = 0, since

∫ T
0
Fn(t, un(t))dt = 0.

This implies by §2.3.6 that u(t) ∈ C(t), contradicting the C0 conver-
gence of un to u. This contradiction completes the proof. □

2.4. Displacing the set where the scaling factor is 1. Let φn,t be the
contact isotopy constructed in §2.3.4; suppose also that the flow line
z : [0, T ] → ∂D(1) used in its definition is such that q(z(T/2)) = 0. By
taking T sufficiently large, we may suppose that:

(1) C(0) lies in a small neighbourhood U− of −iπ−1/2 and C(T ) lies
in a small neighbourhood U+ of iπ−1/2.

Then by §2.3.4 and §2.3.8 we can take n large enough that:

(2) the length of φn,t, for t ∈ [0, T ], is as close to 1/2 as desired,
(3) the set Σn where φ∗

n,tα = α satisfies that the projection of
φn,t(Σn) to D(1) is as close to the travelling circular arc C(t)
as desired.

These two properties are achieved by taking n sufficiently large.

Fix now a small number ϵ. We claim:

Lemma 8. There exists a strict contact isotopy κt of ∂B(1) whose
Shelukhin-Hofer length is at most ϵ/4 and whose time 1 map sends
the point lying above iπ−1/2 into the fiber over p = q = 0.

Proof. Apply [Ush14, Theorem 1.6] to the point:

A = [iπ−1/2 : 0 : · · · : 0] ∈ CP n = ∂B(1)/(R/Z)

to conclude a Hamiltonian isotopy with Hofer norm less than ϵ/4 which
sends A to some point in the hyperplane divisor lying above p = q = 0.
Then use the fact that Hamiltonian isotopies of CP n with small Hofer
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norm lift to strict contact isotopies of S2n+1 with small Shelukhin-Hofer
norm, as shown in, e.g., [She17, pp. 1192]. □

Fix such an isotopy κt. By picking T large enough, we may suppose
that:

(9) κ1(pr
−1(U+)) ⊂ pr−1(D(ϵ))

where the disk D(ϵ) is disjoint from U−; here pr : ∂B(1) → D(1) is the
projection to the p-q-plane. We also pick n large enough that:

(10) Σn ⊂ pr−1(U−) and φn,T (Σn) ⊂ pr−1(U+).

Introduce γt = φn,tT . We claim that the isotopy ψt = κtγt has a time-1
map without translated points, and has length at most (1 + ϵ)/2.

Indeed, the scaling factor 1 set for ψ1 is the same as the scaling factor
1 set for φn,T , namely Σn, since κt is strict. By (9), (10) and the fact
that there are no Reeb flow lines joining pr−1(U−) to pr−1(D(ϵ)), since
the Reeb vector field is rotational, it follows that there are no Reeb
flow lines joining Σn to ψ1(Σn). Thus ψ1 has no translated points.

The contact Hamiltonian generating κtγt is kt + Thn,tT ◦ κ−1
t , where

kt, hn,t are the contact Hamiltonians for κt and φn,t; this easily yields
the bound on the length of ψt provided the length of φn,t is less than
1/2 + ϵ/4. This completes the proof of Theorem 1.

2.5. Non-existence of translated chains. We prove Theorem 2

The original time T flow φt, with T large, has the property that: the
circle C(0) divides D(1) into regions where scaling factor is bigger than
or smaller than 1, and if pr(x) lies in D(ϵ), then the scaling exponent
at x is strictly negative. Here D(ϵ) is as in §2.4.
In particular, if we pick n sufficiently large, we can ensure that, if x
has scaling factor less than 1 for φn,T , then φn,T (x) ∈ pr−1(U+). On
the other hand, we can also ensure that, if x has scaling factor more
than 1 for φn,T , then x ∈ pr−1(U−). Finally, if x ∈ pr−1(D(ϵ)), then
the scaling exponent of φn,T at x is strictly negative.

Let γt = φn,T t and ψt = κtγt, as above. Since R
α
s and κ1 are strict, the

scaling factor of Rα
sψ1 at x equals the scaling factor of φn,T at x. Let

us abbreviate η = Rα
sψ1.

Since Rα
s preserves pr−1(D(ϵ)) and κ1(pr

−1(U+)) ⊂ pr−1(D(ϵ)), we
conclude that:

(11) if x has scaling factor ≤ 1 for η, then η(x) ∈ pr−1(D(ϵ)).

Now suppose that ηk has a fixed point x with scaling factor 1.
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It is easy to show that the scaling factor of ηk at x is the product
of the scaling factors at x, η(x), η2(x), . . . , ηk−1(x); see, e.g., [Can24].
Therefore, at least one point ηj(x), j = 0, . . . , k− 1, must have scaling
factor at most 1. It then follows from (11) that ηj+1(x) ∈ pr−1(D(ϵ)).
Therefore the scaling exponent of η at ηj+1(x) is strictly negative, so
ηj+2(x), ηj+3(x), etc, are all contained in pr−1(D(ϵ)).

It then follows that x must lie in pr−1(U−), otherwise the product of
scaling factors would be strictly less than 1. However, pr−1(U−) and
pr−1(D(ϵ)) are disjoint, since U− and D(ϵ) are disjoint. This completes
the proof. □
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