
ON THE SPECTRAL CAPACITY OF SUBMANIFOLDS

DYLAN CANT AND JUN ZHANG

Abstract. The infimum of the spectral capacities of neighbourhoods
of a nowhere coisotropic submanifold is shown to be zero. In con-
trast, neighbourhoods of a closed Lagrangian submanifold, and of certain
contact-type hypersurfaces, are shown to have uniformly positive spec-
tral capacity. Along the way we prove a quantitative Lagrangian control
estimate relating spectral invariants, boundary depth, and the minimal
area of holomorphic disks. The Lagrangian control also provides novel
obstructions to certain Lagrangian embeddings into a symplectic ball.

1. Introduction

Let (M2n, ω) be a semiconvex symplectic manifold. Here semiconvexity is
a geometric assumption which states that the non-compact end of M , if
non-empty, is modelled on S+Y × T where S+Y is the positive half of the
symplectization of a compact contact manifold and T is a symplectically
aspherical symplectic manifold (e.g., T could be a point). For example, all
compact symplectic manifolds are semiconvex, the open symplectic mani-
folds Cn, T ∗L are semiconvex, and if M is semiconvex then so is the Carte-
sian product M × T 2.

We will also require the following notion of semipositivity. Following, e.g.,
[HS95, Sei97, MS12], we say that (M,ω) is semipositive if any smooth sphere
u : S2 →M satisfies:

ω(u) > 0 and c1(u) ≥ 3− n =⇒ c1(u) ≥ 0.

If 3 − n is replaced by 2 − n, then we say M is strongly semipositive. It
will be important for us to observe that, if M is semiconvex and strongly
semipositive, then M × T 2 is semiconvex and semipositive.

If M is semiconvex and semipositive, [Sch00, Oh05, FS07, Ush08] explain
how to associate a spectral invariant c(Ht, [M ]) to any compactly supported
time-dependent Hamiltonian1 function Ht on M via a homological min-
max process applied to a certain class in the Floer homology of Ht. Similar
invariants appear in [Vit92] using instead the theory of generating functions.

Date: August 1, 2025.
1We abuse notation and let the symbol Ht represent a time-dependent Hamiltonian

function M × R/Z → R.

1

gi
t:f

8e
b6

88
18

  0
1 

A
ug

 2
02

5 
 1

9:
39

:0
4 

-0
40

0
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Given any open subset U ⊂M we define the spectral capacity by:

c(U) := sup {c([M ], Ht) : Ht has compact support in U} .
Finally, for any other set N , we extend the spectral capacity by outer regu-
larity, i.e., the infimum is over open sets U .

c(N) = inf {c(U ⊂M) : U is an open neighbourhood of N}
Such a quantity has appeared before, and is called the homological capacity
in [Gin07, §3.3.4] and the spectral width in [PR14].

Our first theorem proves the spectral capacity vanishes for a large class
of submanifolds, including all compact symplectic submanifolds of positive
codimension:

Theorem 1. If M is semiconvex and strongly semipositive and S ⊂ M is a
compact nowhere coisotropic submanifold then c(S) = 0.

The proof is given in §2.1. The main idea appeals to the fact that S is stably
infinitesimally displaceable, as proven by [Gür08] and [LS94]. The strategy
is to relate spectral invariants in M with spectral invariants in M × T 2.

It is well-known that, if S can be displaced by Hamiltonian isotopies with
arbitrarily small Hofer length then the energy-capacity inequality implies
Theorem 1; see, e.g., [HZ94, §5.5], and [Sch00, Oh05, FGS05, Gin05, Ush10]
for details on the energy-capacity inequality. Our argument follows a similar
idea, and the key step is to generalize the energy-capacity inequality to work
for stable displacement energy ; in Theorem 11 below, we prove that the
stable displacement energy of a set bounds its spectral capacity from above.

1.1. Note on relative capacities. The rest of the introduction is concerned
with other results about the spectral capacity. Many of the results involve
introducing other capacities. In total, we will introduce three Floer theoretic
capacities c, γ, β, and a Lagrangian capacity ℓ.

These capacities are all relative capacities, in that they are always associated
to pairs (N,M), where M is a symplectic manifold and N ⊂ M is an
arbitrary subset. All of the capacities we consider are first defined for open
subsets and then extended to all sets by outer regularity :

c(N,M) = inf {c(U,M) : U is an open neighborhood of N} .
Each capacity is a functor valued in the category (R,≤) whose objects are the
real numbers with a morphism a→ b if and only if a ≤ b. Here a morphism
of pairs is a symplectomorphism φ : M1 → M2 so that φ(N1) ⊂ N2. In
particular, if φ is a symplectomorphism, then:

c(N1,M1) = c(φ(N1), φ(M1)).

As the ambient space is typically clear from the context, we will use the
abbreviation c(N) = c(N,M).
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1.2. The spectral diameter versus the capacity. An important quantity re-
lated to the spectral capacity is the spectral norm:

γ(φt) := c([M ], Ht) + c([M ], H̄t),

where Ht generates φt and H̄t = −Ht ◦ φt. One advantage of this quantity
is that it is independent of the choice of the Hamiltonian function Ht, and
depends only on φt. Analogously to the definition of c(U), one can define:

(1) γ(U) := sup {γ(φt) : φt is supported in U} ,
extended to all subsets S ⊂ M by outer regularity. Clearly γ(S) ≤ 2c(S);
thus Theorem 1 implies γ(S) = 0 holds whenever S is a compact nowhere
coisotropic submanifold.

1.3. Lagrangian control for the spectral capacity. Our next result bounds
the spectral capacity of a compact Lagrangian L in terms of the areas of
holomorphic disks with boundary on L. Following, e.g., [Che98], define:

ℏ(L) := sup {ℏ(L, J) : J ∈ J}
where ℏ(L, J) is the minimal area of a J-holomorphic disk inM with bound-
ary on L, or J-holomorphic sphere in M . Here J is the set of admissible
almost complex structures onM , namely those which are ω-tame and invari-
ant under the Liouville flow in the noncompact end S+Y × T (the Liouville
flow acts only on the first factor). Let us note that if J is admissible and J ′ is
ω-tame and differs from J only on a compact set, then J ′ is also admissible.
It follows that ℏ(L) = ℏ(L′) whenever L,L′ differ by an exact isotopy.

We will show:

Theorem 2. IfM is semiconvex and semipositive, and if L ⊂M is a compact
Lagrangian submanifold, then ℏ(L) ≤ c(L).

The result is not new, except perhaps in this generality; see [Vit99, Her04,
Alb06, BC07, BC09b, BC09a]. The theorem should be seen as corollary of
our quantitative Lagrangian control property Lemma 3, which is novel in
that it involves the boundary depth quantity introduced in [Ush11].

Briefly, the idea of Lagrangian control2 is to define a version of the open-
closed map on the Floer homology by counting half-infinite Floer cylinders
with boundary on L, as shown in Figure 1. By counting the rigid such
cylinders passing through a fixed point in L, one concludes:

Lemma 3. If Ht is a compactly supported Hamiltonian function on M and:

β(Ht) +

∫ 1

0
max(Ht)−min(Ht|L)dt < ℏ(L),

then we have:

c([M ], Ht) ≥
∫ 1

0
min(Ht|L)dt;

2See [Pol98, Pol01, LZ18, PS23] for variations on the Lagrangian control property.
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here β(Ht) is the boundary depth of [Ush11].

The proof of Lemma 3 is deferred to §2.2.
It is important to recall from [Ush11, Oh09] that:

(2) β(Ht) ≤
∫ 1

0
max(Ht)−min(Ht)dt.

Note that (2) is generalized to β(Ht) ≤ γ(Ht) in [KS21, FZ24].

Proof of Theorem 2. for any A < ℏ(L), and any neighborhood U of L, one
can find a function Ht with:

(a) max(Ht) = min(Ht|L) = A,
(b) min(Ht) = 0,
(c) Ht is compactly supported in U ,

and so that the hypotheses of Lemma 3 are satisfied, using (2). One therefore
concludes c(U) ≥ ℏ(L), and taking the infimum over neighborhoods U yields
Theorem 2. □

γ L∂su+ J(u)(∂tu−Xt(u)) = 0

Figure 1. A half-infinite Floer cylinder asymptotic to γ
with Lagrangian boundary conditions is used to estimate the
spectral invariant.

Remark. In [GG18] the fact that c(L) is strictly positive when L is a closed
Lagrangian admitting a metric without contractible closed geodesics is used
to prove a Lagrangian recurrence theorem for iterated pseudorotations. The-
orem 2 shows that c(L) is strictly positive for all closed Lagrangians.

1.3.1. Lagrangian and boundary depth capacities. We digress for a moment
on two additional capacities. First, we introduce the Lagrangian-ℏ capacity
of an open set U ⊂M to be:

ℓ(U) := sup {ℏ(L) : L ⊂ U is a closed Lagrangian} .
Second, we introduce the boundary depth capacity of U ⊂M to be:

β(U) := sup {β(Ht) : Ht is supported in U} .
Both capacities are extended to all subsets N ⊂M by outer regularity.

Lemma 3 implies:

Theorem 4. Suppose that c(N) is finite. Then ℓ(N) ≤ β(N).
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Proof. Pick any neighborhood N ⊂ U small enough so that c(U) is finite,
and pick a Lagrangian L ⊂ U and complex structure J . As above, choose a
function Ht so that max(Ht) = min(Ht|L) = A.

Provided β(Ht) is smaller than ℏ(L), Lemma 3 implies that c(Ht) ≥ A.
Since c(U) is finite, we cannot make A arbitrarily large; therefore, for A
large enough, β(Ht) must be at least ℏ(L). Thus β(U) ≥ ℏ(L). Taking the
supremum over L and then taking the infimum over neighborhoods U yields
the desired result. □

1.3.2. Spectral norm and non-interfering Lagrangians. Let us call disjoint
open sets U1, U2 non-interfering provided:

(3) β(H1,t +H2,t) = max {β(H1,t), β(H2,t)}
whenever Hi,t is supported in Ui. The max-formula (3) for boundary depth
is proved for various pairs U1, U2 in [GT23]; for instance, if U1, U2 are disjoint
Darboux balls in Cn, then U1, U2 are non-interfering.

Let us say that a pair of closed Lagrangians (L1, L2) is non-interfering pro-
vided there is a non-interfering pair of neighborhoods U1, U2 so that Li ⊂ Ui.
It is important to note that we do not require the Ui to be arbitrarily small
neighborhoods of Li.

For example, if L1, L2 are contained in disjoint Darboux balls in Cn, then
L1, L2 are non-interfering. Also note that being non-interfering is invariant
under Hamiltonian isotopy (L1, L2) 7→ (φ(L1), φ(L2)).

We consider the following variant of the Lagrangian capacity.3 For an open
subset U ⊂M we define:

ℓ2(U) := sup {min {ℏ(L1), ℏ(L2)} : L1 ⊔ L2 ⊂ U is non-interfering} ,
and extend this to all sets by outer regularity. Then:

Theorem 5. For any subset N ⊂M , we have:

2ℓ2(N) ≤ γ(N);

in other words, a pair of non-interfering Lagrangians bounds the spectral
diameter from below.

Proof. Let H1,t ≥ 0 and H2,t ≤ 0 be functions so that:

max(H1,t) = min(H1,t|L1) = A,

min(H2,t) = max(H2,t|L2) = −A,
and supposeH1,t, H2,t are supported in non-interfering neighborhoods. Then,
by the Hofer-norm upper bound to the boundary depth, applied to each
function separately, we conclude:

β(H1,t +H2,t) ≤ A.

3See [Hin24, pp. 3] for related discussion of packing two Lagrangians in a ball.
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Therefore, if A < ℏ(L1) and A < ℏ(L2), we conclude:

c([M ], H1,t +H2,t) ≥ A and c([M ], H̄1,t + H̄2,t) ≥ A,

and hence γ(H1,t + H2,t) ≥ 2A. We can take A any number smaller than
min {ℏ(L1), ℏ(L2)}, and this yields the desired result. □

Theorem 5 and the result of [AAC24] that γ(B(1)) = 1 implies:

Theorem 6. Let Li ⊂ Cni, i = 1, 2, be closed Lagrangians, and suppose that
L1 admits a nowhere-zero closed one-form and n2 > 0. If φ is a Hamiltonian
diffeomorphism of Cn1+n2 so that:

φ(L1 × L2) ⊂ B(1),

then ℏ(L1 × L2) < 1/2.

In particular, if n1 = n2 = 1, then we recover a special case of the result of
[Vit90, Che96, CM18, HO20] that φ(∂D(a1) × ∂D(a2)) ⊂ B(1) holds for a
Hamiltonian diffeomorphism φ only if min {a1, a2} < 1/2.

Remark. As explained in [Vit90, Che96], the result that a torus:

∂D(a1)× . . . ∂D(an)

does not admit an exact isotopy into the interior of a ball B(a) if a1 ≥ na
is due to unpublished work of Floer-Hofer concerning a product formula for
the Ekeland-Hofer capacities.

Proof. Let Lϵ
1 be a small push-off of L1 using the nowhere zero closed one-

form. The Lagrangians L = L1 × L2 and Ks = Lϵ
1 × (L2 + se1) are Hamil-

tonian isotopic, as pairs, for all s, and L and Ks are contained in disjoint
balls for s sufficiently large. Thus L and K0 are non-interfering. By taking ϵ
small enough, we can ensure that ℏ(K0) is as close to ℏ(L1×L2) as desired.
Thus, if φ(L1 × L2) ⊂ B(1), then Theorem 5 implies:

2ℏ(L1 × L2) < γ(B(1)) = 1,

where we use [AAC24] in the last equality. □

Remark. Theorem 6 fails if n2 = 0, in which case L2 = C0 = pt. Indeed,
we have ∂D(a) ⊂ D(1) for all r < 1 and ℏ(∂D(a)) = a can be made larger
than 1/2. This is because ∂D(a) and ∂D(a+ ϵ) are interfering.

1.4. Contrast with the hypersurface case. We also prove the following bound
on the spectral capacity of certain contact-type hypersurfaces:

Theorem 7. Let (M,α) be a Liouville manifold, and let N ⊂M be a compact
hypersurface so that α restricts to N as a contact form (we say that N is of
restricted contact type). Then c(N) is bounded from below by the minimal
period of the Reeb flow of α|N .
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This result is proved by a direct analysis of the spectrum of actions appear-
ing in a certain specific systems supported near N . The idea of directly
analyzing the spectrum of orbits is not new, and a more refined analysis in
[Gin07] proves: if (M,ω) is an aspherical symplectic manifold, and N ⊂M
is a coisotropic submanifold which is stable and displaceable then the spectral
capacity of N is positive. We include the proof of Theorem 7 for the reader’s
convenience.

It is interesting to recall the following question posed in [Gin07, §3.3.4]:
Question 1 (Ginzburg). Does it hold that c(Σ) > 0 for every closed hyper-
surface Σ ⊂ R2n?

1.5. Beyond stable coisotropic submanifolds. Most of the existing litera-
ture focus on the case when N is stable in the sense of [Bol96, Bol98];
see, e.g., [Gin07] and [Dra08, Ker08, Gür10, Ush11, Kan13, GG15]. For
other works on coisotropic submanifolds which do not assume stability, see
[Mos78, Hof90, Zil17, LR20].

It is noteworthy that [GG15] construct non-stable hypersurfaces N which
can leaf-wise displaced4 by Hamilotonian isotopies φt with arbitrarily small
Hofer length. This suggests that any positive solution of Question 1 in the
general case will not be based on leaf-wise intersection points.

However, the spectral capacity of the hypersurfaces constructed in [GG15,
pp. 993] is uniformly positive; indeed, the hypersurfaces contain a common
Lagrangian, and one can then appeal to the lower bound ℓ(N) ≤ c(N).

Before ending this section, we mention a related question:

Question 2. Does it hold that ℓ(N) > 0 for every compact coisotropic sub-
manifold N? In particular, does it hold that ℓ(Σ) > 0 for every closed
hypersurface in Σ ⊂ R2n?

This is relevant because a positive answer to Question 2 implies a positive
answer to Question 1.

1.5.1. Sets which contain Lagrangian submanifolds. One way to give a pos-
itive answer to Question 2 for N is to find a closed Lagrangian submanifold
L ⊂ N . However, the following shows this is not always possible:

Proposition 8. There exist closed starshaped hypersurfaces N ⊂ R4 which do
not contain closed Lagrangians. Indeed, any closed starshaped hypersurface
whose Reeb flow is ergodic does not contain any closed Lagrangian. In fact,
we only require that the Reeb flow has a dense trajectory.5

4leaf-wise displaced means no pair (x, φ1(x)), x ∈ N , lies on the same leaf of the
characteristic foliation of N

5An ergodic flow has many dense trajectories; see, e.g., [CS16, Lemma 11].
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Here we recall that a measure preserving dynamical system is ergodic pro-
vided all invariant sets have either full measure or zero measure. The mea-
sure used for Reeb flows is the volume measure of the contact form.

Proof. The argument is quite simple: any Lagrangian L2 ⊂ N3 is a dividing
hypersurface becauseN is diffeomorphic to a sphere. Moreover, by definition
of the characteristic foliation, the Reeb vector field must be tangent to L.
In particular L divides N into two disjoint invariant subsets, both of which
have nonzero measure. This contradicts ergodicity. Since the sets are in fact
open, this also contradicts the existence of a dense trajectory. □

As to the construction of such ergodic Reeb flows, we refer the reader to
[CS16, §4.2] which constructs an ergodic Reeb flow on the standard contact
sphere S2n+1 for every n using [Kat73, Theorem A]. The Reeb flow con-
structed using [Kat73, Theorem A] is generated by a homogeneous Hamil-

tonian H : R2n \{0} → R which can be taken arbitrarily close to H0 = π |z|2
in the C∞

loc topology. In particular, the hypersurface N = H−1(1) is arbi-
trarily close to the standard 3-sphere, and N does not contain a closed
Lagrangian.

Remark. There has recently been much work concerning closed invariant
subsets in hypersurfaces in R4, e.g., [FH23, CGP24]. In general, if X ⊂ N is
a subset of a coisotropic submanifold, then we say X is an invariant subset
provided x ∈ X implies the entire characteristic leaf through x is contained
in X. We say X is non-trivial provided X ̸= ∅ and X ̸= N . It seems
to be an interesting question whether a closed coisotropic submanifold Nd,
with d > n, always contains a non-trivial closed invariant subset. This has
been answered in the affirmative for N3 ⊂ R4 by [FH23]. This question
generalizes the existence of a closed Lagrangian submanifold L ⊂ N , since
L is always a non-trivial closed invariant subset.6

1.5.2. Toric sets. An obvious class of coisotropic submanifolds for which
Question 2 has a positive answer are the toric sets, i.e., those obtained as
preimages N = µ−1(Γ) of subsets Γ under a moment map (assuming at least
one value in Γ is a regular value with non-empty fiber).

As a special case, if µ : Cn → Rn is the standard moment map µ(z) = π |z|2,
then one easily deduces:

ℏ(µ−1(a1, . . . , an)) ≥ min {a1, . . . , an} ,
and, in this setting,

(4) c(µ−1(Γ)) ≥ ℓ(µ−1(Γ)) ≥ max {min {a1, . . . , an} : a ∈ Γ} .
When n = 2 and Γ is the standard simplex (so µ−1(Γ) = B(1) is the ball of
capacity 1), the first and last terms in (4) differ by a factor of n. In [SZ13]

6Note that if d = n and Nd is a connected coisotropic submanifold then there is a
single leaf of its characteristic foliation.
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it is shown that ℓ(B(1)) ≥ 1/2. One realizes this lower bound using the
Lagrangian:

(5) L =
{
zq : z ∈ S1 and q ∈ ∂B(1) ∩ Rn

}
considered in [Wei77, Aud88, Pol91].

On the other hand, our Theorem 6 proves the upper bound ℏ(L) < 1/2
whenever L = φ(L1 × L2) if φ is a Hamiltonian diffeomorphism and L1, L2

satisfy certain hypotheses. This suggests the question:

Question 3. What is the exact value of ℓ(B(1))?

If one considers the variant of the Lagrangian capacity which considers the
rationality constants ρ(T ) of Lagrangian tori T (see [CM18, Per22, GPR22]),
then, for a large class of domains Γ, it holds that:

(6) sup
{
ρ(T ) : T ⊂ µ−1(Γ)

}
= max {min {a1, . . . , an} : a ∈ Γ} .

The equality (6) was proved when Γ is the standard simplex in [CM18]; see
also [Vit90, Che96] and unpublished work of Floer-Hofer which proves (6)
holds when Γ is a simplex in terms of the capacities from [EH90] provided
one restricts the supremum to only those T symplectomorphic to an ele-
mentary torus (i.e., there is an ambient symplectomorphism of R2n taking
a elementary torus to T ).

In dimension n = 2, the [CM18] show the rationality constant of any La-
grangian contained in the ball B(1) is at most 1/2 (such Lagrangians include
tori and certain negatively curved non-orientable surfaces) .

In related work, [Côt20, §7] studies a refinement ρ2(T ) of the rationality
constants of tori which considers only the symplectic areas of disks with
Maslov number 2; [Côt20] proves the equality (6) in dimension n = 2 when
Γ is a rectangle and with ρ replaced by ρ2; see also [Cha15].

1.6. The Hofer diameter of small open sets. It is well-known that the spec-
tral norm of φt is bounded from above by the Hofer norm of φt computed in
the universal cover. It is therefore natural to consider the following quantity:

(7) sup {∥φt∥Hofer : φt is supported in U}
as a Hofer analogue of γ(U); here U is open and:

∥φt∥Hofer := inf

{∫ 1

0
max
M

Ht −min
M

Htdt : Ht ∼ φt

}
,

where Ht ∼ φt means the time-1 isotopy generated by Ht is homotopic to
φt with fixed endpoints. However:

Theorem 9. For any non-empty open set U in a compact semipositive sym-
plectic manifold M , the quantity in (7) is infinite.

The argument follows [PR14] and is based on the existence of a measurement
m(φt) satisfying:
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(M1) m(φt) ≤ ∥φt∥Hofer,
(M2) m(φt) = Vol(M)−1Cal(φ1) if φt is supported in a displaceable Dar-

boux ball,

where Cal(φ) is the Calabi invariant for Hamiltonian diffeomorphisms of an
exact symplectic manifold; see, e.g., [MS12].

Such a measurement can be constructed as a homogenization of the spectral
invariants of the mean-zero Hamiltonian Ht generating φt. To be precise:
let Hk

t be the mean-zero Hamiltonian generating φk
t , and define:

(8) m(φt) = − lim
k→0

c([M ], Hk
t )

k
.

We refer the reader to [EP03] for a similar quantity satisfying a similar
Calabi property. The straightforward verification that m satisfies (M1) and
(M2) is recalled in §2.4.
Since one can find systems supported in any ball with arbitrarily large Calabi
invariant, Theorem 9 easily follows easily from (M1) and (M2).

It is interesting to ask whether Theorem 9 holds if one does not work in
the universal cover of the group of Hamiltonian diffeomorphisms. This is of
course related to the long-standing open question whether the Hofer diame-
ter of every compact symplectic manifold is infinite; see [Ost03, McD10] for
related discussion.

It is also interesting to consider to what extent Theorem 9 holds if one
replaces M by an open symplectic manifold. It cannot hold in general since
the results of [Sik90] and [HZ94, BIP08, BK17, KZ22] show that:

Proposition 10. Any compact set in R2 × M with the product symplectic
structure has a bounded Hofer diameter in the universal cover. □

The argument uses the fact that any precompact open set U is displaceable
with infinite packing number, i.e., one can find Hamiltonian diffeomorphisms
ψ1, ψ2, . . . , of R2 ×M so that the images ψi(U), i = 1, 2, . . . , are pairwise
disjoint. See [PS23] for further discussion of such packings.

1.7. Contact geometry speculations. It is natural to wonder which of these
results has analogues in contact geometry. Let us briefly speculate on this.

Using spectral invariants from contact Floer cohomology, as in [Can23,
DUZ23], one can associate a spectral invariant cα(ϕt) to any contact iso-
topy ϕt of the ideal boundary of a Liouville manifold W whose symplectic
cohomology is non-vanishing. The definition depends on choice of contact
form α on the ideal boundary. One can then define capacities as above.
However, these spectral invariants are unfortunately not invariant under the
conjugation action of the contactomorphism group. The resulting capacities
will generally fail to be invariant under the contactomorphism group.
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One way to extract invariant measurements via contact Floer cohomology is
to appeal to more discrete invariants. For example, [CU24] defines a functor
from the category of domains in Y to the category of vector spaces:

Ω ⊂ Y 7→ Q(Ω) ∈ Vect(Z/2).
Moreover, every contactomorphism φ of Y which extends to a symplecto-
morphism of W induces a natural isomorphism of this functor.

With this structure one can, e.g., define invariant measurements such as:

q(Ω) = rank of Q(Ω) → Q(Y ).

One can extend such an invariant to all subsets of Y by outer regularity,
and it is interesting to wonder which submanifolds the resulting capacity is
sensitive to.

For other approaches to defining invariant measurements in contact geome-
try see, e.g., [Giv90, Eli91, EKP06, San11, Zap13, AM18, AA23]
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2. Proofs

2.1. Proof of Theorem 1. The proof has two main steps. The first step is to
relate the spectral capacity to the stable displacement energy. The second
step is to prove compact nowhere coisotropic submanifolds have neighbor-
hoods with arbitrarily small stable displacement energy.

2.1.1. Stable displacement energy. We say that a compact set K ⊂ M is
stably displaceable provided that:

K × S1 ⊂M × T ∗S1

is displaceable via a Hamiltonian isotopy. In this case, we say that the
infimal Hofer length of an isotopy in M × T ∗S1 displacing K × S1 is its
stable displacement energy, denoted sde(K). For an open set U , we define:

sde(U) = sup {sde(K) : K ⊂ U compact} .
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The first goal in this section is to prove:

Theorem 11. The spectral capacity c(U) of an open set U ⊂ M is bounded
from above by the stable displacement energy sde(U).

A related result appears in [EP09, §6] and [Bor12, §3.6], although our result
is proved by relating spectral invariants in M with M × T 2 while [Bor12]
uses M × S2.

The key will be the following result involving the torus:

Ta = R/Z× R/2aZ,
whose coordinates are labelled x, y.

Lemma 12. Let Ht be a compactly supported time-dependent Hamiltonian
function onM , and let ρ : R/2aZ → R be a smooth function so that ρ(y) = 1
for y in a neighborhood of the pair of antipodal points {0, a}. Then:

c([M × Ta], ρ(y)Ht + k cos(πy/a)) = c([M × Ta], Ht + k cos(πy/a))

holds for k sufficiently large.

Proof. The idea is to consider the 1-parameter family of Hamiltonian func-
tions on M × Ta, parametrized by τ ∈ [0, 1], given by:

Gτ = (1− τ + τρ(y))Ht + k cos(πy/a),

and to show that, for k sufficiently large, the closed contractible orbits of
the system Φτ,t generated Gτ and their actions are independent of τ . It
will then follow from the continuity and spectrality7 properties for spectral
invariants that c([M × Ta];Gτ ) is independent of τ .

We compute:

dGτ = (1− τ + τρ(y))dHt + (τρ′(y)Ht − πa−1k sin(πy/a))dy.

Now we use the fact that ρ′(y) = 0 for y in a neighborhood of {0, a}. In
particular, for k sufficiently large,

(9) τρ′(y)Ht − πa−1k sin(πy/a) = 0 ⇐⇒ y ∈ {0, a} .
Since the symplectic vector field associated to dy is ∂x, and XHt is tangent
to the level sets M × {(x, y)}, it follows that:

contractible orbits of Φτ,t =

{
(γ, x, y) :

γ is an orbit of XHt ,

x ∈ R/Z and y ∈ {0, a}

}
.

It remains to prove the actions of these contractible orbits are independent
of τ . In other words, it remains to prove that the integral of Gτ,t over the
above orbits is independent of τ . This follows immediately since we assume
ρ(y) = 1 in a neighborhood of {0, a}. This completes the proof. □

7We should assume that M is rational in order to appeal to spectrality. In §A.7 we
explain how to drop the rationality assumption.
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Using this result, and the Künneth formula for spectral invariants proved in
[EP09, Theorem 5.1] (see also §A.6), we obtain:

Lemma 13. Let Ht, ρ be as in Lemma 12. Then:

c([M ], Ht) ≤ c([M × Ta], ρ(y)Ht).

Consequently, the spectral capacity of U ⊂ M is bounded from above by the
spectral capacity of U × Γ ⊂M × Ta where Γ = {y = 0} ∪ {y = a}.

Proof. We begin by using Lemma 12 (with k taken large enough) and the
Künneth formula from [EP09, Theorem 5.1] to obtain:

c([M ], Ht) + c([Ta], k cos(πy/a)) = c([M × Ta], Ht + k cos(πy/a))

= c([M × Ta], ρ(y)Ht + k cos(πy/a)).

Since ρ(y)Ht and k cos(πy/a) are Poisson-commuting, we can apply the
triangle inequality8 for spectral invariants to obtain:

c([M × Ta], ρ(y)Ht + k cos(πy/a))

≤ c([M × Ta], ρ(y)Ht) + c([M × Ta], k(cos(πy/a))).

= c([M × Ta], ρ(y)Ht) + c([Ta], k(cos(πy/a))),

where we have used [EP09, Theorem 5.1] again in the last equality. Combin-
ing everything and cancelling the common term c([Ta], k(cos(πy/a))) yields
the desired result. □

The final lemma used to prove Theorem 11 relates displacement energy in
M × T ∗S1 and M × Ta, for a sufficiently large.

Lemma 14. Let K ⊂M be a compact set. The displacement energy of K×S1

in M × T ∗S1 equals:

inf {displacement energy of K × Γa in M × Ta : a > 0} ,
where Γ = {y = 0}∪{y = a}. In particular, if sde(K) < ϵ, then K×Γa has
displacement energy in M × Ta less than ϵ for a large enough.

Proof. The proof is a straightforward construction. See also [EP09, §6]. □

Theorem 11 follows from Lemmas 13 and 14 and the well-known energy-
capacity inequality applied to M × Ta; see [Sch00, Oh05, FGS05, Gin05,
Ush10] for the proof of the energy-capacity inequality.

Proof of Theorem 11. For any function Ht with compact support K ⊂ U ,
Lemma 14 implies we can displace a neighborhood of K × Γ in M × Ta (for
large enough a) by a Hamiltonian isotopy whose Hofer length is at most

8We do not prove the well-known triangle inequality for spectral invariants in this
paper; see, e.g., [AAC23] for some discussion in the convex-at-infinity case.
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sde(U) + ϵ, where ϵ is an arbitrarily small number. Then Lemma 13 and
the energy capacity inequality yield:

c([M ], Ht) ≤ sde(U) + ϵ.

Infimizing over ϵ and then supremizing over systems Ht yields the desired
conclusion. □

2.1.2. Nowhere coisotropic submanifolds. The next result is:

Theorem 15. Let S ⊂ M be a compact nowhere coisotropic submanifold.
For any ϵ > 0, S has a neighborhood U with sde(U) < ϵ. □

This is proved in [Gür08]. We briefly recall the argument. The key idea is
the following lemma:

Lemma 16. Let S be a submanifold (not necessarily nowhere coisotropic)
and suppose that X is a nowhere vanishing section of TS⊥ω which admits a
Lyapunov function F defined on a neighborhood of S, i.e., dF (X) > 0 holds
along S. Then the Hamiltonian vector field XF is nowhere tangent to S.

If XF is a complete vector field, then for each ϵ > 0, S has a neighborhood
U so that each compact set K ⊂ U can be displaced by Hamiltonian isotopy
with Hofer length at most ϵ.

Proof. We compute ω(X,XF ) > 0, and thus XF cannot be tangent to S.

Suppose that XF is a complete vector field. Replace F by ϵπ−1 arctan(F ),
so that maxF − minF < ϵ. Clearly F is still a Lyapunov function for X,
and hence XF is still transverse to S. Moreover XF is still a complete vector
field.

By the parametric transversality theorem, there exists some time t0 ∈ (0, 1)
so that ϕt0(S) and S are disjoint. In particular, there are disjoint open sets
U1, U2 around S and ϕt0(S) so that ϕt0(U1) ⊂ U2. Then U = U1 is the
desired open set, since any compact set in U will be displaced by ϕt0 , which
has Hofer length at most ϵ. □

Let S be nowhere coisotropic. Then S × S1 ⊂ M × TS1 is still nowhere
coisotropic, and T (S × S1)⊥ω contains TS1 ⊂ T (M × S1). In particular,
T (S × S1)⊥ admits a non-vanishing section Z. The strategy is to replace
Z by another non-vanishing section X which admits a Lyapunov function
F . The previous lemma then implies that S × S1 has neighborhoods with
arbitrarily small stable displacement energy, yielding Theorem 15.

To achieve this one uses the criterion for existence of Lyapunov functions
given in [Sul76, Theorem II.26]; see also [LS94], and [Gro86, §1.4]. Applying
this criterion, [Gür08] concludes:

Lemma 17. Let S ⊂ M be a compact nowhere coisotropic submanifold and
suppose that TS⊥ω has a non-vanishing section; then there is a non-vanishing
section X of TS⊥ω and a smooth function F so that dF (X) > 0. □
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Together with Lemma 16, we conclude Theorem 15, completing the proof of
Theorem 1.

Interestingly enough, if L is an open Lagrangian, then L admits a nowhere
vanishing gradient vector field X, so X admits a Lyapunov function. Since
TL⊥ω = TL, there are Hamiltonian vector fields which are nowhere tangent
to L. This shows that being nowhere coisotropic is not a necessary condition
to be transverse to a Hamiltonian vector field.

2.2. Proof of Lemma 3. Let Ht, L, be as in the statement, and introduce
J ∈ J so that:

β(Ht) +

∫ 1

0
max(Ht)−min(Ht|L)dt < ℏ(L, J).

Consider the moduli space M of half-infinite Floer cylinders:

(10)


u : (−∞, 0]× R/Z →M,

∂su+ J(u)(∂tu−Xδ,t(u)) = 0,

u(0,R/Z) ∈ L,

u(0, 0) = pt,

where pt is a fixed basepoint in L, and Hδ,t is a C2-small perturbation of
Ht used to achieve non-degeneracy of the time-1 orbits and transversality of
the relevant moduli spaces; here Xδ,t is the Hamiltonian vector field of Hδ,t.
We continue to suppose Hδ,t satisfies the hypotheses of Lemma 3.

For convenience in the proof, introduce the abbreviations:

β := β(Hδ,t), E+ =

∫ 1

0
max(Hδ,t)dt, E− =

∫ 1

0
min(Hδ,t|L)dt,

and ℏ = ℏ(L, J). We suppose β + E+ − E− + 2ϵ < ℏ for a small ϵ > 0.

Let us say that u ∈ M is admissible provided:

(1) there is a capped orbit (x, v) with action less than β + E+ + 2ϵ,
(2) the left asymptotic of u is the orbit x,
(3) the concatentation v#u forms a disk with boundary on L with zero

symplectic area.

Let CF<β+E++2ϵ(Hδ,t, J) be the subcomplex generated by the capped orbits
of Xδ,t whose actions are less than β + E+ + 2ϵ. Define a map:

e : CF<β+E++2ϵ(Hδ,t, J) → Z/2,
by counting the rigid elements in M as follows: e(x, v) is the number of rigid
elements in M whose left asymptotic of u is the orbit x and v#u forms a
disk with boundary on L with zero symplectic area. It is clear that only
admissible elements contribute to this count.

The key estimate is:
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Proposition 18. The admissible curves u ∈ M have Floer energies bounded
from above by β + E+ − E− + 2ϵ < ℏ.

Proof. If u ∈ M is admissible, with left asymptotic x, then:

E(u) ≤ ω(u) +

∫
x
Hδ,t −

∫
u(0,t)

Hδ,t = (action of (x, v))−
∫
u(0,t)

Hδ,t,

where the capping v is such that v#u has zero symplectic area. Since we

assume that (x, v) has action less that β + E+ + 2ϵ, and
∫ 1
0 Hδ,t|Ldt is at

least E−, we conclude the desired upper bound. □

This a priori energy bound implies the piece of M used to define e, and to
prove it is a chain map, is compact up to breaking of Floer cylinders; disk
bubbling on L (or sphere bubbling in M) cannot occur since the energies
are below the bubbling threshold (bearing in mind that ℏ is the minimal
area of a J-holomorphic disk or sphere).

Standard Floer theoretic arguments then prove e : CF<β+E++2ϵ → Z/2 is a
chain map, for a generic perturbed system Hδ,t.

The next step in the argument is to show that some representative of the
unit is sent by e to 1:

Proposition 19. Let ζ ∈ CF<E++ϵ be the cycle representing the unit obtained
by the standard PSS map (as recalled below). Then e(ζ) = 1.

Proof. We begin by briefly recalling the PSS cycle of [PSS96] which repre-
sents the unit element; further details are given in §A.5. It is defined by
counting the rigid finite-energy solutions to:

(11)


v : C →M smooth,

u = v(e2π(s+it)),

∂su+ J(u)(∂tu− β(s)Xδ,t(u)) = 0,

where β(s) is a standard cut-off function satisfying β(s) = 0 for s ≤ 0 and
β(s) = 1 for s ≥ 1. Each such rigid solution v is considered as a capping of
the asymptotic orbit, and therefore the count of rigid solutions, denoted ζ,
is valued in the complex CF(Hδ,t, J).

A standard energy estimate,9 as in [Sch00], implies that the action of the
resulting capped orbit is bounded by E+, and hence the PSS element ζ is
valued in CF<E++ϵ(Hδ,t, J).

It remains to prove that e(ζ) = 1. A similar argument appears in [AAC23].
We will consider the parametric moduli space of pairs (R,w) where w :

9Some care is needed in the open case; one needs to appeal to the maximum principle
to conclude this energy estimate. See [FS07, §5.1] for further discussion.
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D(1) →M is smooth and has zero symplectic area and solves:
u = w(e2π(s+it)) (so u : (−∞, 0]× R/Z →M),

∂su+ J(u)(∂tu− β(s+R)Xδ,t(u)) = 0,

u(0, t) ∈ L and u(0, 0) = pt,

and R ∈ R. This parametric moduli space has two non-compact ends. One
end is when R < 0, in which case w is simply a J-holomorphic disk, with
zero symplectic area, and hence must equal the point pt. The other is
when R → ∞, in which case w “splits” in the Floer theoretic sense into
a configurations (v, u) where v solves (11) and u solves the equation (10)
defining e. The count of such rigid configurations is the composition e(ζ).

The usual energy estimate for Floer cylinders implies that any solution w
has energy:∫ 1

0

∫ 0

−∞
ω(∂su, ∂tu− β(s+R)Xδ,t(u))dsdt ≤ E+ − E− < ℏ,

and hence the 1-dimensional parametric moduli space defines a compact
cobordism between the slice where R = −1 (which is a single point) and the
slice where R = R0. The cobordism is compact because we are below the
bubbling threshold for holomorphic disks and spheres. Sending R0 → ∞
and appealing to standard Floer theoretic breaking-and-gluing results then
proves that e(ζ) = 1. □

The reader will notice that we have not yet invoked the definition of the
boundary depth β(Hδ,t). In the final step of the argument, we will use it to
prove:

Proposition 20. Every representative of the unit element in CF<E++ϵ is sent
by e to 1.

Proof. We recall that the unit element is the cohomology class of ζ, as
defined above (by the PSS construction). Thus it suffices to prove that
every element of the form ζ + dµ which lies in CF<E++ϵ is sent by e to 1.

Clearly, if e was a well-defined chain map on the entire chain complex CF,
then e(ζ+dµ) = e(ζ) = 1 would hold automatically. However, e is not a well-
defined chain map on all of CF. However, our earlier discussion establishes
that e is a chain map on CF<β+E++2ϵ.

Since dµ ∈ CF<E++ϵ is exact in CF, the definition of the boundary depth
implies dµ is exact in CF<β+E++2ϵ. Thus dµ = dµ′ where µ′ ∈ CF<β+E++2ϵ,
and hence:

e(ζ + dµ) = e(ζ + dµ′) = e(ζ) = 1,

since e is a chain map on CF<β+E++2ϵ. This completes the proof. □
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To finish the proof of Lemma 3, we recall the definition of the spectral
invariant as a homological min-max:

c([M ];Hδ,t) := inf
µ

{highest action orbit appearing in ζ + dµ} .

Clearly, it suffices to infimize over ζ + dµ ∈ CF<E++ϵ. However, each such
chain is sent by e to 1 ∈ Z/2. In particular, for any such chain ζ + dµ, at
least one of the capped orbits (x, v) appearing in the chain appears as the
left asymptotic of a solution u to (10) which defines e. The energy of u is at
most (action of (x, v))− E−, and hence:

action of (x, v)− E− ≥ 0 =⇒ c([M ];Hδ,t) ≥ E−.

The proof is completed by taking a limit of the perturbed systems Hδ,t, as
explained above. □

2.3. Proof of Theorem 7. We recall the set-up: N ⊂ (M,α) is a hypersurface
of restricted contact type. The Liouville vector field Z is transverse to N ,
and so a neighborhood of N foliated by level sets of a function r so that:

(1) r|N = 1,
(2) dr(Z) = r.

The Hamiltonian vector field Xr has orbits of the form ρs(γ(t)) where γ(t)
is an orbit of Xr inside of N and ρs is the Liouville flow for some time s.

Fix some A less than the minimal period of the Reeb flow minus ϵ.

Let fδ : R → R be a non-negative bump function with max fδ = A, with
support in (e−δ, eδ), and suppose that δ is very small. We additionally
require that f ′δ(r) is a period of the Reeb flow only when:

(1) fδ(r) ≤ δ,
(2) fδ(r) ≥ A− δ.

ConsiderH = fδ(r) as a Hamiltonian function. We will compute the possible
actions of contractible orbits. The action of a contractible orbit η(t) is:

a(η) =

∫
H(η(t))−

∫
η∗α,

Each such orbit satisfies η(t) = ρlog(r(η))(γη(Tt)) where γη(t) is a T -periodic
orbit for the Reeb flow in N , and T = f ′δ(r(η)). Notice that the value r(η)
is constant along the flow.

Case 1: if fδ(r) ≤ δ, then there are three possibilities:

a(η) = 0, a(η) ≥ e−δT or a(η) ≤ δ − e−δT ,

where T > 0 is a positive period of the Reeb flow.

Case 2: if fδ(r) ≥ A− δ, then there are again three possibilities:

a(η) = A, a(η) ≥ A− δ + e−δT , or a(η) ≤ A− e−δT ,

where T > 0 is a positive period as in Case 1.
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Since A ≤ |T | − ϵ, we can pick δ small enough so that either the action of η
is non-positive, or:

a(η) ≥ min
{
A, e−δT,A− δ + e−δT

}
≥ A,

where the latter inequality holds as δ → 0.

Since the spectral invariant c([M ], H) is non-negative, the spectral invari-
ant c([M ],−H) is non-positive, and the spectral norm is non-degenerate,
c([W ], H) must be strictly positive. Since c([M ], H) is the action of some
orbit, we must have that c([M ], H) ≥ A. The desired result then follows by
taking the limit ϵ→ 0. □

2.4. Proof of Theorem 9. The goal is to show that the measurement m
defined in (8) satisfies (M1) and (M2).

Consider the Floer continuation map CF(Hk
t , J) → CF(0, J) associated to

the linear interpolation from Hk
t to 0. This map is action decreasing, up to

an error,

(action of input)− (action of output)−
∫ 1
0 minHk

t dt ≥ 0.

Since the spectral invariant of the unit with respect to the zero system has
action equal to 0, it follows that:

c([M ], Hk
t ) ≥

∫ 1

0
minHk

t dt ≥ k

∫ 1

0
minHt −maxHtdt,

where we use that Hk
t is mean-normalized to conclude the maximum is non-

negative and the minimum is non-positive. Therefore:

−c([M ], Hk
t ) ≤ k(Hofer length of Ht).

The spectral invariant is sensitive only to the time-1 map in the universal
cover, and hence we can infimize over isotopies to conclude:

−c([M ], Hk
t ) ≤ k ∥φt∥Hofer .

Finally, dividing by k and taking the limit implies m(φt) ≤ ∥φt∥Hofer, which
is exactly (M1).

Next we establish property (M2), so suppose Ht is supported in a displace-
able Darboux ball B. Then Hk

t − kµ(Ht) is mean-normalized, where µ(Ht)
is the time-dependent mean of Ht, and hence:

m(φt) = − lim
k→∞

c([M ], Hk
t − kµ(Ht))

k
.

It is well-known property of the Floer homology spectral invariants that:

c([M ], Hk
t − kµ(Ht)) = c([M ], Hk

t )− k

∫ 1

0
µ(Ht)dt,
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i.e., adding a time-dependent constant simply shifts the spectral invariant
appropriately. Thus:

m(φt) =

∫ 1

0
µ(Ht)dt− lim

k→∞

c([M ], Hk
t )

k
=

∫ 1

0
µ(Ht)dt =

Cal(φ1)

Vol(M)
.

The middle equality holds because the spectral capacity of a displaceable
ball is bounded, and the final equality holds by definition of the Calabi
invariant. This proves (M2). □

Appendix A. Spectral invariants from the nonarchimedean perspective

In this appendix we briefly review the definition of spectral invariants in
semiconvex manifolds, and explain how to use the nonarchimedean perspec-
tive from [UZ16, Ush13] to recover [EP09, Theorem 5.1] .

A.1. Floer complex over the universal Novikov field. Let Ht be a Hamilton-
ian system whose time-1 map has non-degenerate fixed points, and define:

CF(Ht; Λ) :=
{
F : R → V (Ht) : F |(−∞,L) has finite support

}
.

Here V (Ht) is the free Z/2-vector space generated by the 1-periodic orbits
of Ht. Addition is defined as the usual addition of functions.

In a similar manner, we define the universal Novikov field:

Λ =
{
λ : R → Z/2 : λ|(−∞,L) has finite support

}
.

There are multiplication operations induced by discrete convolution; e.g.,

(λ · F )(a) =
∑

b+c=a

λ(b)F (c).

This defines a multiplication Λ⊗CF(Ht; Λ) → CF(Ht; Λ). Similar formulas
give a multiplication Λ⊗ Λ → Λ in such a way that Λ becomes a field, and
then CF(Ht; Λ) becomes a vector space over Λ. See, for instance, [Hut24]
for this perspective on the Novikov field.

It is convenient to introduce the symbol τaγ ∈ CF(Ht; Λ) to represent the
element defined by:

(τaγ)(a′) = δa,a′γ,

where δa,a′ = 1 if a = a′ and is zero otherwise, and γ ∈ V (Ht). Then any
element in CF(Ht; Λ) is a semi-infinite sum of terms of the form τaγ.

It is not hard to see that, if γ1, . . . , γk is the complete list of orbits of Ht,
and a1, . . . , ak are arbitrary numbers, then τa1γ1, . . . , τ

akγk forms a basis
for CF(Ht; Λ) over the field Λ.
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A.2. Nonarchimedean filtration. On V (Ht) we define the nonarchimedean
filtration:10

ℓ(
∑

ciγi) = sup

{∫ 1

0
Ht(γi(t))dt : ci ̸= 0

}
.

This extends to the following nonarchimedean filtration on CF(Ht; Λ) by:

ℓ(F ) = sup {ℓ(F (a))− a : a ∈ R} .
One easily verifies for any λ1, . . . , λk ∈ Λ that:

ℓ

( k∑
i=1

λiτ
aiγi

)
= max {ℓ(λ1τa1γ1), . . . , ℓ(λkτakγk)} .

In other words, {τa1γ1, . . . , τakγk} is an orthogonal basis for CF(Ht; Λ).
Thus (CF(Ht; Λ), ℓ) is an orthogonalizable Λ-space, and the results of [UZ16]
can be applied.

A.3. The Floer differential. In this section we briefly recall the definition of
the differential on CF(Ht; Λ) using the auxiliary data of a generic ω-tame
complex structure J . In the semipositive framework, one fixes a generic J
so that the moduli space of simple J-holomorphic curves is transversally cut
out. For generic Ht, the moduli space of finite energy Floer cylinders with
asymptotics γ−, γ+ and symplectic area b, i.e., solutions of:

(12)


u : R× R/Z →M,

∂su+ J(u)(∂tu−Xt(u)) = 0,

lims→±∞ u(s, t) = γ±(t) and ω(u) = b

will be compact up to translations and the usual breaking of Floer trajecto-
ries. In the semipositivity framework, it is important that Ht is generic in
order for this compactness to hold, because one obstructs the bubbling of
J-holomorphic spheres using general position arguments.

Let us denote by I(γ−, γ+, b) the finite count (reduced modulo 2) of rigid-
up-to-translation solutions to (12). Define on CF(Ht; Λ) the map:

d(τaγ−) =
∑
b,γ+

I(γ−, γ+, b)τ
a+bγ+.

In words, the differential counts all the rigid-up-to-translation Floer cylin-
ders, using the Novikov coefficients to keep track of their symplectic areas.
It is well-known that d2 = 0 provided Ht is generic.

10This ℓ should not be confused with the Lagrangian capacity in §1.3.1.
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A.4. Floer complex of capped orbits. Let CF(Ht) denote the vector space of
semi-infinite sums of capped orbits (γ, v). Here the capping v is an equiv-
alence class of disks bounding γ; two disks are equivalent if their difference
forms a sphere with zero symplectic area and zero first Chern number. The
sums are semi-infinite in that for any L ∈ R, a sum can have only finitely
many terms (γ, v) with ω(v) < L.

Define a morphism: ι : CF(Ht) → CF(Ht; Λ) by:

ι : (γ, v) 7→ τω(v)γ.

It is straightforward to check that this morphism is well-defined.

We obtain a nonarchimedean filtration on CF(Ht) by pulling back the nonar-
chimedean filtration on CF(Ht; Λ). Moreover, one can define the Floer dif-
ferential on CF(Ht) (using the same equation as (12)) in such a way that ι
becomes a chain map.

Pick an auxiliary section s of the determinant line bundle of (M,J) whose
zero set is disjoint from all orbits of Ht. The signed intersection number
between a capping and s−1(0) is well-defined (independent of the repre-
sentative). The section can also be used to define Conley-Zehnder indices
CZs(γ) in such a way that:

(13) deg(γ, v) = n− CZs(γ)− 2s−1(0) · v
defines a grading on CF(Ht) so that the Floer differential decreases grading
by 1. The normalization of (13) is chosen so that the PSS morphism sends
a cycle of dimension k to a Floer cycle of grading k.

We then have the following extension of coefficients lemma (see [MSV24,
Proposition 2.4] for the same result):

Lemma 21. Let ζ ∈ CFk(Ht) lie in the kth graded piece. Then:

inf {ℓ(ζ + dη) : η ∈ CFk−1(Ht)} = inf {ℓ(ι(ζ) + dβ) : β ∈ CF(Ht; Λ)} .
In other words, extending coefficients to the universal Novikov field does not
decrease the nonarchimedean distance to the subspace of exact elements.

Proof. It suffices to prove the ≥ inequality. Let Πk ⊂ CF(Ht; Λ) be the
subspace over Z/2 of semi-infinite sums spanned by terms τaγ satisfying:

• a is not the symplectic area of capping v so deg(γ, v) = k.

We claim that dΠk−1 ⊂ Πk. Indeed, if τa+bγ+ appears in the output of
d(τaγ−) then the there is an index 1 Floer cylinder of area b joining γ− to
γ+; this observation proves the claim.

Then any element β can be decomposed as β = ι(η) + π where π ∈ Πk−1.
We compute:

ℓ(ι(ζ) + dβ) = ℓ(ι(ζ + dη) + dπ) ≥ ℓ(ι(ζ + dη)) =: ℓ(ζ + dη).
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The ≥ inequality follows since ι(ζ + dη) and Πk are orthogonal. Indeed, let
us consider any term τaγ which optimizes ℓ(ζ + dη). This term cannot be
cancelled by any term appearing in dπ, by definition. Hence τaγ still appears
in ι(ζ+dη)+dπ with non-zero coefficient, and the desired inequality follows.
This completes the proof. □

A.5. Spectral invariant of the unit. First suppose thatM is compact. Recall
from Proposition 19 the cycle ζ ∈ CF(Ht) obtained by counting rigid PSS
cylinders. This cycle lies in the 2n graded piece of CF(Ht). Then:

c([M ], Ht) = inf {ℓ(ι(ζ) + dβ) : β ∈ CF(Ht; Λ)}
is an invariant of the (generic) system Ht and the complex structure J .

Some care is needed when M is open, in which case M is assumed to be
semi-convex (has a non-compact end modelled on S+Y × T ). In this case,
we require that Ht has a split equivariant negative ideal restriction. This
means that, in the non-compact end, the system generated by Ht is:

(1) split, i.e., of the form (φt, ϕt) where φt, ϕt are Hamiltonian systems
on S+Y and T , respectively,

(2) equivariant, i.e., φt is equivariant under the Liouville flow on S+Y ,
(3) negative, i.e., the system φt is generated by an asymptotically neg-

ative Hamiltonian function.

Assuming equivariance, negativity is equivalent to requiring that the ideal
restriction of φt (a contact isotopy on Y ) is a negative path in the contac-
tomorphism group.

In this case, one can prove an energy estimate for solutions to the PSS
equation (this is not the case if φt has a positive ideal restriction). Con-
tinuing to assume that the system generated by Ht has non-degenerate 1-
periodic orbits, one obtains a maximum principle and the compactness up-
to-breaking of the moduli space of solutions to the PSS equation, following,
e.g., [BC24, AAC23]. The upshot of this discussion is that the PSS cycle ζ
and the spectral invariant c([M ],Ht) can be defined as in the compact case.

Finally, one extends the definition of c([M ], Ht) to systems where φt is non-
positive by a limiting process, approximating φt by negative systems. The
details in the case when T = pt and φt = id can be found in [AAC23] and
the general case follows from the same argument.

A.6. A product formula for spectral invariants. Let M be strongly semipos-
itive and semiconvex. As above, let the non-compact end of M be modelled
on S+Y ×T . ThenM×T 2 is semipositive and semiconvex; the non-compact
end of M is modelled on S+Y × (T × T 2).
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Let Ht be a system on M whose flow is split, equivariant, and non-positive,
so that c([M ], Ht) is defined by the above procedure. Let Kt be any Hamil-
tonian system on T 2. Then:

Ht ◦ π1 +Kt ◦ π2
is split, equivariant, and non-positive on M × T 2 with respect to the non-
compact end S+Y × T × T 2. The goal in this section is to prove:

Theorem 22 (see [EP09, Theorem 5.1]). The spectral invariants satisfy:

c([M × T 2], Ht ◦ π1 +Kt ◦ π2) = c([M ], Ht) + c([T 2],Kt),

where Ht,Kt are as above.

The proof is based on the nonarchimedean singular value decomposition
result from [UZ16] and the analysis of orthogonal bases and tensor products
from [Ush13, §8]. The result is not new (the non-compact setting does not
change things in a significant way) and follows from [EP09, Theorem 5.1];
we include the argument only for completeness.

Proof. By continuity, it suffices to prove the case when Ht is split, equi-
variant, and negative (rather than non-positive). We may also assume that
Ht is generic on the compact part so that all orbits are non-degenerate and
the Floer differential is well-defined (for some generic admissible complex
structure J). We similarly pick Kt generically so that the Floer complex is
well-defined (using the standard almost complex structure on T 2).

Abbreviate Gt = Ht ◦ π1 +Kt ◦ π2, and observe that the system generated
by Gt is split with respect to the decomposition M × T 2. In particular,
every orbit of Gt is of the form (γ(t), µ(t)) where γ, µ are orbits of Ht,Kt,
respectively. This induces an isomorphism:

(14) CF(Ht; Λ)⊗Λ CF(Kt; Λ) → CF(Gt; Λ),

satisfying (τaγ)⊗ (τ bµ) 7→ τa+b(γ, µ).

The key analytic input is that (14) is a chain map, provided one uses the
split complex structure on M × T 2, and where the differential on the left
hand side of (14) is d ⊗ 1 + 1 ⊗ d. This is fairly obvious, and has been
observed before in, e.g., [EP09, §5.4]. Moreover, if ζ(Ht) and ζ(Kt) be the
PSS cycles representing the unit element, then the image of ζ(Ht) ⊗ ζ(Kt)
under (14) is the PSS cycle representing the unit in CF(Gt; Λ).

The rest of the proof is entirely algebraic. The first step is to appeal to
the nonarchimedean singular value decomposition of [UZ16]. This yields an
orthogonal Λ-basis:

{Z1, . . . , ZN , T1, . . . , TM , S1, . . . , SM}
for CF(Ht; Λ) such that:

(1) T1, . . . , TM is a basis for im(d),
(2) Z1, . . . , ZN projects to a basis for ker(d)/im(d),
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(3) dSi = Ti.

One similarly concludes a basis {Z ′
1, . . . , T

′
1, . . . , S

′
1, . . . } for CF(Kt; Λ).

Write:

ζ(Ht) = ξ(Ht) + dβ(Ht) and ζ(Kt) = ξ(Kt) + dβ(Kt),

where ξ(Ht), ξ(Kt) lie in the span of the Z,Z ′ vectors respectively. It follows
from orthogonality of the bases that:

(15) c([M ], Ht) = ℓ(ξ(Ht)) and c([T
2],Kt) = ℓ(ξ(Kt));

in other words, the ξ cycles are carriers of the spectral invariants.

The next step is to appeal to the results on tensor products of orthogonaliz-
able Λ-vector spaces from [Ush13, §8]. There it is proven (in a more general
context) that:

(16) ℓ(
∑

i,j λiλ
′
jZi ⊗ Z ′

j) = maxi,j

{
ℓ(λiZi) + ℓ(λjZ

′
j)
}
,

where we abuse notation and let Zi ⊗ Zj denote its image under (14). It
is also shown that the tensor product of orthogonal bases is sent to an
orthogonal basis.

Thus we conclude that:

ζ(Ht)⊗ ζ(Kt) = ξ(Ht)⊗ ξ(Kt) + dβ.

We then conclude:

c([M × T 2], Gt) = inf {ℓ(ζ(Ht)⊗ ζ(Kt) + dβ) : β ∈ CF(Gt; Λ)}
= inf {ℓ(ξ(Ht)⊗ ξ(Kt) + dβ) : β ∈ CF(Gt; Λ)}
= ℓ(ξ(Ht)⊗ ξ(Kt))

= ℓ(ξ(Ht)) + ℓ(ξ(Kt))

= c([M ],Ht) + c([T 2],Kt),

where we have used the orthogonality of the tensor product basis in the
third equality, (16) in the fourth equality, and (15) in the final equality.
This completes the proof. □

A.7. On the rationality assumption in continuity arguments. In the proof
of Theorem 1 (in particular, Lemma 12) we appealed to rationality to con-
clude that spectral invariants are constant along a deformation provided the
contractible orbits and their actions are constant. The reasoning is that
the spectral invariants are continuous and valued inside the spectrum of the
system. However, this is only known to hold in general when the symplectic
manifold is rational, or the systems remain non-degenerate.

The following shows that one can drop the rationality assumption in the
proof of Lemma 12.
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Lemma 23. Let Hs,t be a family of Hamiltonian functions which are split,
equivariant, and negative in the non-compact end of a semiconvex and semi-
positive symplectic manifold M . Suppose that the set of contractible orbits of
Hs,t is independent of s, and the values of Hs,t in a neighborhood containing
these orbits are also independent of s. Then it holds that:

c([M ], H0,t) = c([M ], H1,t).

Proof. The shortest argument is to perturb Hs,t in an s-independent way in
a neighborhood of the contractible orbits, so that each contractible orbit of
Hs,t becomes non-degenerate. Then one can appeal to the non-degenerate
spectrality proved in [Ush08]. This completes the proof.

An alternative argument is decompose the continuation:

HF(H0,t) → HF(H1,t)

into a composition of many continuation maps, and prove (under the hy-
potheses of the lemma) that such a continuation map preserves the action
of any cycle made of contractible orbits. We leave the details of such an
approach to the reader. □
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[CS16] R. Casals and O. Spáčil. Chern-weil theory and the group of strict contactomor-
phisms. J. Topol. Anal., 8(1):59–87, 2016.
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[PR14] L. Polterovich and D. Rosen. Function Theory on Symplectic Manifolds, vol-
ume 34 of CRM Monograph Series. American Mathematical Society, 2014.

[PS23] L. Polterovich and E. Shelukhin. Lagrangian configurations and Hamiltonian
maps. Compositio Math., 159:2483–2520, 2023.

[PSS96] S. Piunikhin, D. Salamon, and M. Schwarz. Symplectic Floer-Donaldson the-
ory and quantum cohomology. In Contact and symplectic geometry (Cambridge,
1994), volume 8 of Publ. Newton Inst., pages 171–200. Cambridge Univ. Press,
Cambridge, 1996.

[San11] S. Sandon. Contact homology, capacity and non-squeezing in R2n × S1 via gen-
erating functions. Ann. Inst. Fourier, 61(1):145–185, 2011.

[Sch00] M. Schwarz. On the action spectrum for closed symplectically aspherical mani-
folds. Pacific J. Math., 193:419–461, 2000.

[Sei97] P. Seidel. π1 of symplectic automorphism groups and invertibles in quantum
homology rings. Geom. funct. anal., 7:1046–1095, 1997.
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