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Abstract/Résumé

This dissertation is devoted to proving virtual dimension formulas for the moduli

spaces of holomorphic curves which appear in relative Symplectic Field Theory. The

crucial ingredients are a generalization of the large antilinear deformation argument

in [Tau96] and [Ger18] to the case when the domain of the curve has boundary

and punctures, and an exponential convergence result generalizing the 3-dimensional

results proved in [Abb99].

Cette dissertation est consacrée à la démonstration de formules de dimension virtuelle

pour les espaces des modules de courbes holomorphes qui apparaissent dans la Théorie

des Champs Symplectiques Relative. Les ingrédients cruciaux sont une généralisation

de l’argument de grande déformation antilinéaire présent dans [Tau96] et [Ger18]

au cas où le domaine de la courbe a une frontière et des points de ponctuation, ainsi

qu’un résultat de convergence exponentielle généralisant les résultats tridimensionnels

démontrés dans [Abb99].
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8.3. Bochner-Weitzenböck estimates and a linear compactness result 116
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Chapter 1

Introduction

Let (Y 2n+1, ξ, α) be a contact manifold with a contact form α. Symplectic Field

Theory can be thought of as a Floer-type theory for the contact action functional :

A(γ) =

∫
R/Z

γ∗α,

defined on the infinite dimensional space of loops C∞(R/Z, Y ). Relative Symplectic

Field Theory is the analog where we introduce a Legendrian submanifold Λn ⊂ Y

and consider the analogous action:

A(c) =

∫ 1

0

c∗α,

on the domain C∞([0, 1], Y,Λ), i.e., smooth paths joining Λ to itself. The data (Y, ξ, α)

specifies a vector field R called the Reeb vector field, and it is easy to see that critical

points of A are unparametrized flow lines for R.1 These split into two classes: orbits

and chords.

As explained in §1.3, there is a family of complex structures on R×Y adapted to the

contact form α which have the property that holomorphic curves defined on punctured

Riemann surfaces are asymptotic to Reeb chords and orbits at their boundary and

interior punctures, respectively. In this sense, the counts of holomorphic curves can

be interpreted as some sort of Morse/Floer homology for the above action functional.

For such a choice of complex structure J , and a punctured Riemann surface (Σ, j)

we can form the moduli space of holomorphic maps M = M(Σ, j, J). Near a given

u ∈ M(Σ, j, J), we construct a Sobolev manifold W 1,p,δ, where δ > 0 is a sufficiently

small exponential weight, and a (smooth) non-linear operator ∂̄J defined on W 1,p,δ

so that M is identified with the inverse image ∂̄−1
J (0). The associated linearized

operator Du is a Cauchy-Riemann operator with non-degenerate asymptotics. The

operator Du is a Fredholm operator, as explained in §6. When Du is surjective, then

M is a manifold whose dimension equals the Fredholm index Du. In general, we say

that the Fredholm index of Du is the virtual, or expected, dimension of M. The main

1In other words, if c′(t) = f(t)R(t) for f(t) ∈ R, then c will be a critical point for A.

1



2 1. INTRODUCTION

result of this thesis is providing the general formula for the virtual dimension d(u):

d(u) = (n+ 1)X(Σ̄)− n |∂Γ−| − n
∣∣Γint

∣∣+Ms · [u] +
∑
ζ∈Γ+

µCZ(A
s
ζ)−

∑
ζ∈Γ−

µCZ(A
s
ζ).

We briefly summarize the terms.

(i) X(Σ̄) is the Euler characteristic of the unpunctured surface,

(ii) ∂Γ−, Γ
int are the negative boundary punctures and all interior punctures, re-

spectively,

(iii) Ms = s−1(0) is the relative Maslov Class associated to a section s of detC(ξ)
⊗2

(see §1.3.3 for the requirements on s), and

(iv) µCZ(A
s
ζ) is the Conley-Zehnder index of the non-degenerate asymptotic opera-

tor associated to the puncture ζ. The section s specifies a unique way to extract this

index, as explained in §1.3.3.

Both the homological intersection Ms · [u] and the Conley-Zehnder indices µCZ(A
s
ζ)

depends on the auxiliary section s in a non-trivial fashion, however, the combination

appearing in the formula of d(u) is independent of s.

This thesis also contains a novel proof of the index formula for Cauchy-Riemann oper-

ators with non-degenerate asymptotic ends, based on the large antilinear deformation

ideas of [Tau96], [Ger18], [Wen20]. A consequence of this argument is the invari-

ance of a novel relative Euler characteristic for surfaces with boundary punctures

(whose invariance is not a priori obvious).

The final main result of this thesis is a proof of an exponential decay result for

holomorphic curves asymptotic to Reeb chords, which was previously only proven in

the case dimY = 3, due to [Abb99], although experts certainly knew the result was

true in all dimensions.

1.1. Motivation

The Reeb vector field appears throughout symplectic geometry:

(i) If Y is the unit tangent bundle of a Riemannian manifold (M, g), then the

geodesic flow on Y is the Reeb flow for a certain contact form; see 1.1.1.

(ii) If Y is a convex hypersurface in R2n, then for appropriate contact forms on Y ,

the Reeb vector field directs the characteristic foliation of Y .2

2We recall that the characteristic foliation F is defined by the property that, for any Hamiltonian
H so that Y is level set H = c, XH points along F.
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The overarching goal of relative SFT is to define homological invariants generated

by the unparametrized Reeb orbits and chords of Λ, and thereby prove rigidity type

theorems. For instance, two open problems are:

Weinstein conjecture. For every (Y, ξ, α) with Y compact, the Reeb vector field R

has a closed orbit.

Arnol’d chord conjecture. For every (Y, ξ, α,Λ) with Y compact, there is a Reeb

chord of Λ.

These conjectures have been verified in various special cases. For instance, in [HT11]

and [HT10], the authors solve the chord conjecture when dim(Y ) = 3, generalizing

earlier work [Abb99]. In [Moh01], the author establishes the chord conjecture when-

ever (Y, ξ) is the boundary of a subcritical Stein manifold. One can think of these

conjectures as contact versions of the famous symplectic Arnol’d conjectures.

Relative SFT is an umbrella term for any construction which associates algebraic

objects (e.g., vector spaces, free algebras, etc) generated by Reeb chords and orbits,

equipped with differentials defined by counting solutions to a certain holomorphic

curve PDE with appropriate asymptotic conditions. The goal is to prove that the

homology of the resulting object is stable under isotopy of the data needed to define

the PDE, and is thus an invariant of the isotopy class of (Y,Λ, ξ).

Such invariants have been rigourously defined in various special cases. For instance,

the Chekanov-Eliashberg DGA, defined in [Che97], [EGH00, §2.8], which associates

a differential graded algebra to each Legendrian knot in R3, freely generated by the

Reeb chords of the knot, and whose differential counts holomorphic disks with bound-

ary on the knot. The study of the Chekanov-Eliashberg DGA, and its generalizations,

have been a fruitful area of research. See for instance, [Sab02], [Etn04], [EHK16],

and the references therein.

Figure 1. A Legendrian knot in R3.



4 1. INTRODUCTION

1.1.1. Legendrians, geodesic flow, and optics. Let Y 2n+1 be the unit tangent bundle

of a Riemannian manifold (Mn+1, g), and pick a contact form α so that αv = g(v,−).

More precisely, in any local orthonormal frame X, there is θ : Y → Sn so that

v = θ(v) ·X(pr(v)). Then we set α =
∑

i θi(v)pr
∗g(Xi,−).

It is an exercise in manipulating tensors to show that the Reeb flow for α is equal to

the geodesic flow on Y . Moreover, it is clear, by construction, that each fiber Λp is a

Legendrian. Thus we conclude that the Reeb chords from Λp to Λq are in bijection

with the geodesics joining p to q.

In general, if Λ(t) := φt(Λp) denotes the time t Reeb flow, then we can think of (the

projection of) Λ(t) as the evolving wave-front arising from a beacon of light emitted

at p when t = 0. The theoretical basis used here is Fermat’s principle which states

that light travels along geodesics.

Basic theorems in contact geometry imply that Λ(t) always remains Legendrian. In-

specting the contact form α, this means that the tangent space to pr ◦ Λ(t) at x

is orthogonal to all the unit vectors in Λ(t) ∩ pr−1(x). In other words, the velocity

component of the wave-front is always normal to the position component of the wave-

front. This latter property is equivalent to Huygens’ principle in optics. Thus we see

the equivalence of Fermat’s and Huygens’ principles.

1.2. Asymptotic Operators as Hessians

Asymptotic operators are linear first-order ODE operators of the form:

A = −J∂t − S(t),

where S(t) symmetric 2n × 2n, and J = diag([ 0 −1
1 0 ], . . . , [ 0 −1

1 0 ]). A priori, A is

defined on C1(R,R2n). We typically restrict the domain to either C∞(R/Z,R2n) or

C∞([0, 1],R2n,Rn), and we call these two cases orbits and chords (of Rn ⊂ R2n). In

these cases, A is self-adjoint when using the obvious L2 inner product.

Such operators have an immediate connection to symplectic geometry: the corre-

sponding linear ODE, ∂tη = JS(t)η, has fundamental solution valued in the symplec-

tic group Sp(2n) :=
{
P : P TJP = J

}
⊂ GL2n(R).

Asymptotic operators typically appear as the analogs of the Hessian when one tries

to do Morse theory for symplectic action functionals. Asymptotic operators are said

to be non-degenerate whenever kerA = 0. This non-degeneracy is the analog of

the Morse condition. Because they are self-adjoint elliptic operators, we can find

orthonormal eigenbases consisting of eigenfuctions, i.e., u satisfying Au = λu, where

the set of eigenvalues is discrete. Unlike classical Morse theory, A will always have
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infinitely many positive and negative eigenvalues, and hence we cannot define the

Morse index, because there is an infinite dimensional negative eigenspace.

One can associate an index to each non-degenerate asymptotic operator A called the

Conley-Zehnder index, which has similar properties to index of a symmetric matrix

in finite dimensions.

1.3. Geometric Preliminaries

We give a brief review of the geometric structures relevant to relative SFT.

1.3.1. Contact manifolds, complex structures, and the symplectization. Briefly, the

geometric set-up is the following. Let (Y, α, ξ, Jξ,Λ) be the data of:

(i) a 2n+ 1 dimensional smooth manifold Y ,

(ii) a 1-form α satisfying α∧ dαn > 0, i.e., a contact form, which induces a contact

distribution ξ := kerα; thus (Y, ξ) is a contact manifold,

(iii) a complex structure Jξ on ξ compatible with dα, in the sense that dα(−, Jξ−)

is an inner product on ξ,

(iv) an n-dimensional compact submanifold Λ ⊂ Y so that TΛ ⊂ ξ|Λ, i.e., a Legen-

drian submanifold.

This data induces a canonical Riemannian metric on Y given by g := α ⊗ α +

dα(−, Jξ−).

Associated to this, we define the symplectization of Y to be the data (R × Y, ω, J),

where

(v) ω = d(eσpr∗α), where σ : R× Y → R and pr : R× Y → Y are the coordinate

projections, and

(vi) J is the unique almost complex structure satisfying J∂σ = R, J |ξ = Jξ, where

R is the Reeb vector field defined above.

Each choice of Jξ leads to an ω-compatible almost complex structure; such almost

complex structures are called admissible.

1.3.2. Asymptotic conditions for holomorphic curves in the symplectization. It can

be shown that holomorphic curves3 u in the symplectization with boundary on R×Λ

have the property that, near any puncture, there is a Reeb chord or orbit c and unique

numbers T > 0 and σ0 so that4

3We require the curves to have finite energy. The precise notion of energy we mean is called the
Hofer energy of a holomorphic curve, introduced in [Hof93]. See §9 for the precise definition.
4There are also removable singularities, namely those with dist(u(s, t), p) = o(1) as |s| → ∞.
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(i) σ ◦ u(s, t)− Ts− σ0 = o(1) as |s| → ∞,

(ii) dist(pr ◦ u(s, t), c(t)) = o(1) as |s| → ∞.

Note that if we switch coordinates s→ −s, then T will need to change sign in order

to keep satisfying (i), and hence the requirement that T > 0 actually specifies a sign

for each puncture, i.e., a canonical way of deciding whether s is valued in [0,∞) or

(−∞, 0]. Negative punctures are asymptotic to σ = −∞, while positive punctures

are asymptotic to σ = +∞. The quantity T is the action of the chord or orbit.

increasing σ

c

c

Figure 2. A punctured holomorphic disk (outlined in black) is as-
ymptotic to a trivial cylinder over Reeb orbit c (shown in blue). There
are two possibilities, either the σ coordinate converges to +∞ (shown
on the left) or the σ coordinate converges to −∞.

1.3.3. The canonical bundle, squared. The canonical bundle is the complex determi-

nant line bundle K = detC(ξ). When dim(Y ) = 3, we simply have K = ξ. Observe

that along Λ there is an injective map detR(TΛ) → K, and hence defines a real-line

subbundle of K. The orientability of this line bundle is equivalent to the orientability

of Λ.

Introduce K2 = K ⊗K, and for p ∈ Λ let lp be the positive ray in K2
p spanned by:

(e1 ∧ · · · ∧ en)⊗ (e1 ∧ · · · ∧ en)

where e1, . . . , en is any basis of TΛp. Similarly, let −lp denote the negative ray.

Definition 1.1. We say that a section s ∈ K2 is admissible or compatible with

(Y, α, J, ξ,Λ) provided that:

(i) s ̸∈ −l holds along Λ,

(ii) s is non-vanishing along each Reeb chord of Λ,

(iii) s = c⊗ c along each Reeb orbit, where c ̸= 0. If such c exists, then it is unique

up to homotopy.

(iv) The zero set s−1(0) is cut transversally.
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This section s induces canonical homotopy classes of asymptotic operators at each

Reeb chord and orbit, i.e., assigns canonical Conley-Zehnder indices to each chord

and orbit. In other words, we should think of s as a coherent way to pick Conley-

Zehnder indices for each orbit or chord.

Roughly speaking, the asymptotic operator is given by linearizing the non-linear Reeb

flow equation at the chord or orbit. To linearize, we require a coordinate system.

Thus, let Φt, t ∈ R/Z or t ∈ [0, 1] be admissible coordinates around the orbit or

chord, as defined in §3.1. Introduce φ := det(dΦt(0))1, φ ∈ K.

For each orbit, use c to select the homotopy class of coordinate charts can be ho-

motoped so as to satisfy g(φ, c) > 0, where g is the induced Riemannian metric on

detC(ξ).

For each chord, we use s to select two homotopy classes of coordinate charts, namely

those which can be homotoped so as to satisfy g(φ⊗2, s) > 0. These charts differ by

how they orient TΛ0. It is proved in §3.4 that the asymptotic operators arising from

the two homotopy classes of charts in the chord case have the same Conley-Zehnder

index.

The relationship between coordinates and s is explained in greater detail in §3.2.

1.3.4. The relative Maslov class. The zero set Ms := s−1(0) represents the Maslov

class for the Legendrian Λ. The transversality hypothesis implies that this zero set

is a compact cooriented codimension 2 submanifold of Y .

We should think of Ms as representing a class in the relative cohomology group

H2(Y,Λ). However, there are additional homotopical restrictions placed on s by virtue

of conditions (ii) and (iii) above. These additional constraints can be interpreted as a

lift of [Ms] ∈ H2(Y,Λ) to H2(Y,Λ∪R), where R is the set of Reeb orbits and chords.

1.3.5. Relative Maslov numbers of maps. Suppose that Σ is a potentially non-compact

oriented surface and u : Σ → Y has topological boundary contained in Λ ∪ R, in the

sense that for all zn → ∞, the limit points of u(zn) are contained in Λ ∪ R. Here R

is a collection of Reeb chords and orbits. Then we can define the Maslov number of

u as the homological intersection number with Ms, as follows.

Definition 1.2. The homological intersection numberMs·[u] is defined by perturbing

u on a compact neighborhood of u−1(Ms) so as to make u and Ms transverse, and

then counting the signed count of intersection points (using the orientation of Σ and

the coorientation of Ms).
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This number is invariant under homotopies of s which remain admissible, since the

inverse image u−1(Ms) will remain in some compact set during such homotopies.

This number is also invariant under homotopies of u, provided that the homotopies

u(π, z) satisfy the property that the limit points of u(πn, zn) lie in Λ ∪ R whenever

zn → ∞ (with no restriction on πn). Here π should be thought of varying in [0, 1].

1.4. The dimension formula for relative SFT

With these preliminaries out of the way, we can state a main result of this thesis.

Theorem 1.3. Let M be the moduli space of all parametrized holomorphic curves

nearby u with the same underlying punctured domain Σ. Then the virtual (or ex-

pected) dimension of M is given by:

dim(M) = (n+ 1)X(Σ̄)− n |∂Γ−| − n
∣∣Γint

∣∣+Ms · [u] +
∑
ζ∈Γ+

µCZ(A
s
ζ)−

∑
ζ∈Γ−

µCZ(A
s
ζ).

where X(Σ̄) is the Euler characteristic of the unpunctured domain (i.e., the compact-

ified domain), and n is the dimension of Λ. Here ∂Γ− are the negative boundary

punctures, while Γint are the interior punctures.

Proof. This is proved in §5.4.2. □

Remark 1.4. By virtual dimension, we mean the Fredholm index of the linearized

operator associated to u, as defined in §4.2. If one wishes to compute the dimension

of curves with constrained asymptotic markers (as is the case in the definition of

contact homology), one should subtract an additional
∣∣Γint

∣∣. As explained in §5.4.2,
our formula matches the one in [BM04, Proposition 4] which is stated for curves

without boundary.

As a corollary, we obtain the following dimension formula in the special case when Y

is the 1-jet space of an n-dimensional manifold, and Λ is a collection of 1-jet sections

Λf1 ,Λf2 , . . . (see §3.6). For appropriate choices, Reeb chords Λfi → Λfj between 1-jet

sections are in bijection with positive critical points of the function difference fj − fi.

We require all the critical points c appearing as asymptotics to be Morse, and hence

it makes sense to speak of the Morse index of c, denoted µMor(c). We then have:

Theorem 1.5. The dimension of the space of parametrized maps near u with the

same underlying domain is:

dim(M) = (n+ 1)X(Σ̄)− n |Γ+|+
∑
ζ∈Γ+

µMor(ζ)−
∑
ζ∈Γ−

µMor(ζ).
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Proof. In §3.6.1 we explain how to pick the section s. For this choice we have

µCZ(A
s
ζ) = µMor(ζ)− n,

as proved in §3.6.2.1. Moreover, the choice of s is globally non-zero, henceMs = ∅ and

so there is no Maslov class term. We then substitute into the formula from Theorem

1.3. □

Some more dimension formulas involving this 1-jet example, including ones which

allow variations of the domain, are explained in §4.3.1.

1.5. Outline of thesis and survey of literature

Special cases of the formula in Theorem 1.3 have appeared throughout the literature.

In particular, the original SFT paper [EGH00] has a dimension formula in the case

when ∂Σ = ∅. The paper [CEJ10] contains a dimension formula which applies in

our geometric context, although it is stated in different terms (i.e., they do not define

the class Ms or the Conley-Zehnder index for Reeb chords, which are the crucial

terms in our formula). The equivalence of the formula in [CEJ10] and ours follows

a posteriori, as they both compute the same quantity, although an a priori proof of

their equivalence would certainly involve many of the results proved in this thesis.

As explained in §7, the Conley-Zehnder index is defined as the Fredholm index of a

certain operator, similarly to [Abo14, §1] or [Par19, §2]. In §2.4, we show that this

definition as a Fredholm index is equivalent to a definition as a spectral flow, agreeing

with the definition given in [Wen20]. The Conley-Zehnder of a chord also can be

expressed as the signed intersection number of a certain path of Lagrangians with the

singular codimension 1 cycle in the Lagrangian Grassmannian introduced in [Arn67].

See [BEE12, Remark 2.1] for an approach to assigning integers to Reeb chords which

uses this intersection theoretic interpretation of the Conley-Zehnder index for chords.

The main focus of §3 concerns the linearization the Reeb ODE at a chord; the

linearization process leads asymptotic operator in the sense described above. See

[Wen20] for a discussion of the linearization in the case Reeb orbits. A similar

coordinate system approach in the case of linearizing the Hamiltonian ODE at an

intersection point of between two Lagrangians is presented in [RS01] (in the case

when the Hamiltonian is 0). In §3.1.3, we explain the analogous picture for Reeb

orbits.

In the case when Y is the 1-jet space of a smooth manifold, the linearization can be

computed explicitly. This is the topic of §3.6. See [EES02], [EHK16], [Ekh07],

[BEE12], and [EL17] for research involving Legendrians in 1-jet spaces.
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In §4, we explain how to linearize the holomorphic curve PDE in the symplectization,

and then apply the index formula from §6 to prove the dimension formula (Theorem

1.3). This section was inspired by [Wen10], [Wen20], [MS12], [BC07], who im-

plement similar linearization procedures. A crucial aspect is the exponential decay

result in §10.

The Conley-Zehnder indices and Maslov classes of Legendrian knots in R3 are studied

in §5. We present an algorithm for computing them via certain crossing-moves. One

application of our framework is that we obtain canonical Conley-Zehnder indices for

knots with rotation number zero which agree with those in [Etn04, §4.1] and [EES02,

§2.3].

In §6, the main focus is the analysis of asymptotically non-degenerate Cauchy-Riemann

operators on punctured Riemann surfaces with boundary. Briefly, asymptotically non-

degenerate Cauchy-Riemann operators are those which are asymptotic to operators

of the form

∂s + J∂t + S(t) = ∂s − A,

in strip-like and cylindrical ends around the punctures, where the asymptotic op-

erator A is non-degenerate. The main result is a proof of the Fredholm property

for this class of operators, following the strategy introduced by [Sal97, §2.3] for the
case of closed orbits. In §7 we determine how the Fredholm index depends on the

asymptotic operators via a kernel-gluing argument, analogous to the one given in

[Sch95, §3]. This leads to a natural definition of the Conley-Zehnder indices as the

Fredholm indices of certain operators, as mentioned above. In §8, we generalize the

“large-antilinear deformation” argument introduced by [Tau96], [Ger18], [Wen20],

to compute an explicit formula for the Fredholm index for any asymptotically non-

degenerate Cauchy-Riemann operator.

In the final two chapters, §9 and §10, we generalize the exponential convergence result
for Reeb chords in [Abb99] to all dimensions, following similar strategies to those

in [RS01]. The results in §9 I learned from [Abb14]. The relevance of exponential

estimates for holomorphic curves with non-degenerate asymptotic conditions is well-

studied in SFT, see [Hof93], [HWZ96], [HWZ02], [BEH+03]. In this thesis, the

exponential convergence result is inextricable linked with the desired dimension for-

mulas (i.e., one cannot prove a virtual dimension formula without a priori exponential

decay results). The phenomenon relating exponential decay and the Fredholm index

of the linearized operator is explained in §4.2.2.



Chapter 2

Conley-Zehnder indices associated to an asymptotic operator

As explained in §7, the definition of the Conley-Zehnder index associated to an non-

degenerate asymptotic operator A = −J∂t − S(t) is as the Fredholm index of any

operator D = ∂s − As acting on:

W 1,p(R× S;R2n,Rn) → Lp(R× S;R2n),

where S = [0, 1] or S = R/Z, and As = −J∂t − S(s, t) satisfies S(s, t)ξ = Cξ = ξ̄

for s < 0 and As = A for s > 1. It is proved in §6 that any operator of this form is

Fredholm. We denote the Conley-Zehnder index by µCZ(A) = Index(D).

∂s + J∂t + C ∂s − As

Figure 1. The Conley-Zehnder index is the Fredholm index of any
Cauchy-Riemann operator on the infinite strip or cylinder which inter-
polates between the two asymptotic conditions. The matrix C repre-
sents complex conjugation.

Remark 2.1. Suppose that A is degenerate. It can be shown that any operator

∂s − Aa of the above form (i.e., As = A for s > 1) is not Fredholm.

The first goal in this chapter is to compute the Conley-Zehnder indices for all split

and autonomous asymptotic operators, as explained in §2.3.

2.1. Non-degeneracy as an integral condition

Write A = −J∂t − S(t), and observe that A is non-degenerate if and only if the

boundary value problem:

∂t

[
x(t)

y(t)

]
= JS(t)

[
x(t)

y(t)

]
with

{
chord case: y(0) = y(1) = 0,

orbit case: x(0) = x(1) and y(0) = y(1),

11
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has no non-zero solutions. We see that the non-degeneracy condition amounts to

requiring:

(2.1)

{
chord case: Rn ∩ F(1)(Rn) = 0,

orbit case: F(1) does not have 1 as an eigenvalue,

where Rn ⊂ Cn is the real subspace and F(t) is the fundamental solution of the

ODE, i.e., solves F(0) = 1 and F′(t) = JS(t)F(t) (so that any solution is of the form

x(t) = F(t)x(0)).

Clearly F(1) depends continuously on the path S(t), and if −J∂t−Sτ (t) is a family of

non-degenerate operators, then F(1)Rn will remain transverse to Rn (chord case), or

will never have 1 as an eigenvalue (orbit case). This will be relevant in §2.5 when we

give an intersection theoretic definition of the Conley-Zehnder index, using Arnol’d’s

singular cycle in the Lagrangian Grassmannian.

2.1.1. The fundamental solution is valued in the symplectic group. We observe that:

d

dt
F(t)TJF(t) = F(t)TS(t)TJTJF (t) + F(t)TJJS(t)F(t) = 0,

precisely since S(t)T = S(t). Thus F(t) is valued in the symplectic group.

2.1.2. Relationship between non-degeneracy for orbits and chords. In general, let P

be a symplectic matrix, and consider the graph of P , denoted L(P ), as a linear

subspace in R4n, equipped with the symplectic form pr∗1ω−pr∗2ω where pr1, pr2 are the

coordinate projections onto R2n×R2n. This graph is always a Lagrangian. Moreover,

this graph is transverse to the diagonal Lagrangian if and only if P does not have

1 as an eigenvalue. Thus, if F(t) is the fundamental solution of an orbit asymptotic

operator A, then A is non-degenerate if and only of L(F(1)) is transverse to the

diagonal.

2.2. Input from the index formula

To compute the Conley-Zehnder indices, we require the following inputs from §6. This
statement of the index formula allows one to fairly easily determine how a change of

trivialization affects the Conley-Zehnder index.

Theorem 2.2. Let E → R × [0, 1] be a rank n unitary bundle with totally real

subbundle F → R× {0, 1} defined along the boundary. Suppose:

• X+
1 , . . . , X

+
n and X−

1 , . . . , X
−
n form two sets of unitary frames which restrict to

frames of F along the boundary, and
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• D : C∞(E,F ) → C∞(E) is a differential operator so that

D(uX+) = (∂su− A+
s u)X

+,

D(uX−) = (∂su− A−
s u)X

−,

where A+
s → A+ as s → ∞, and A−

s → A− as s → ∞, for (non-degenerate) asymp-

totic operators A±. Here A±
s = −J∂t − S±(s, t).

Then D : W 1,p(E,F ) → Lp(E) is Fredholm, and

Index(D) = µMas(E,F,X
±) + µCZ(A

+)− µCZ(A
−),

where µMas(E,F,X
±) is the signed count of zeroes of a transverse section of detC(E)

⊗2

which agrees with (X±
1 ∧· · ·∧X±

n )
⊗2 as s→ ±∞ and which restricts to the canonical

section of detR(F )
⊗2 along the boundary. This is called the Maslov number associated

to the data (E,F,X±).

Proof. This is a direct consequence of the general index formula given in §6. □

Theorem 2.3. Let Arefξ = −J∂t− ξ̄ = −J∂t−Cξ, where C is the matrix of complex

conjugation. Then µCZ(Aref) = 0.

Proof. This follows from the fact that the operator D = ∂s−Aref is an isomorphism,

see 6.20, hence Index(D) = 0. However, by definition, the index of this operator

computes µCZ(Aref). □

Remark 2.4. The W 1,p topology is defined via the trivializations induced by X±.

More precisely, a section ξ is inW 1,p if ξ = u±X± and u+ is inW 1,p for s > −1 and u−

is in W 1,p on s < 1. In the sense of 6.3.2, the pair (X+, X−) defines an asymptotically

Hermitian structure.

Remark 2.5. If F is any real vector bundle, det(F ) ≃ F∧top is a real line bundle, and

hence det(F )⊗2 has a canonical orientation. If F also has a metric (e.g., one inherited

from the unitary metric on E), then det(F )⊗2 has a canonical section (namely, the

section (X1 ∧ · · · ∧Xn)
⊗2 where X1, . . . , Xn is an orthonormal frame).

One immediate corollary of the definition is:

Corollary 2.6. If Ar, r ∈ [0, 1] is a continuous path in the space of non-degenerate

asymptotic operators, then µCZ(A0) = µCZ(A1).

Proof. The Fredholm index is unchanged under continuous paths in the space of

Fredholm operators. So long as the asymptotics remain non-degenerate, the operators

remain Fredholm. Since µCZ(A) is defined as the Fredholm index of an operator

D = ∂s − As which has As = Aref for s → −∞ and As = A as s → ∞. We

can therefore define a path of Fredholm operators Dr = ∂s − As,r by requiring that

As,r = Ar for s sufficiently positive and As,r = Aref for s sufficiently negative. Then
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we compute

µCZ(A0) = Index(D0) = Index(D1) = µCZ(A1).

as desired. □

2.3. Computing the Conley-Zehnder indices for autonomous split opera-

tors

In this section we derive various facts about the Conley Zehnder indices for chords,

culminating in a formula for the index whenever the asymptotic operator is au-

tonomous and split. Recall that split operators are those which preserve the decompo-

sition (Cn,Rn) ≃ (C,R)⊕· · ·⊕ (C,R), which amounts to the matrix S(t) = S having

2× 2 blocks along the diagonal with respect to the coordinates x1, y1, . . . , xn, yn.

We focus entirely on the chord case. We will return to the orbit case in §2.6.

2.3.1. Chambers in the space of 2×2 symmetric matrices. In the case when A acts on

sections of the trivial complex line bundle, we can write S = [ a b
b c ] for real parameters

a, b, c. Consider the space of 2× 2 matrices as identified with R3 via the coordinates

(a, b, c).

2.3.1.1. Characterization of non-degeneracy in the case n = 1. We have the following

characterization of non-degeneracy:

Lemma 2.7. The operator A = −J∂t − S is non-degenerate if and only if

(i) a ̸= 0,

(ii) det(S) = ac− b2 ̸∈ (πZ)2 {0}.
Proof. First observe that, for A(x(t) + iy(t)) = 0 if and only if

x′ = −bx− cy and y′ = ax+ by,

since [ 0 −1
1 0 ][ a b

b c ] = [ −b −c
a b ]. Thus, if a = 0, then there exist non-zero solutions y = 0,

x(t) = e−bt, and these satisfy the boundary condition y(0) = y(1) = 0. Thus the

condition a ̸= 0 is necessary for non-degeneracy.

Now, take second derivatives of the equation involving y′ to obtain the following

boundary value problem:

(2.2) y′′ + (ac− b2)y = 0 and y(0) = y(1) = 0

It is well-known that this has non-zero solutions if and only if ac− b2 ∈ (πZ)2 {0},
in which case:

y(t) = ω−1y′(0) sin(ωt) for ω2 = ac− b2.
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This can be proved by setting z = ω−1y′(t), and then observing that (z, y) solves the

ODE y′ = ωz, z′ = −ωy, whose solution is:[
z(t)

y(t)

]
=

[
cos(ωt) − sin(ωt)

sin(ωt) cos(ωt)

][
z(0)

y(0)

]
.

This only leads to a non-zero y(t) when z(0) ̸= 0 and ω ∈ πZ {0}.

In particular, if ac − b2 ∈ (πZ)2 {0}, then we can find non-zero solutions by first

solving y′′ + ω2y = 0 and then solving the ODE for x(t). Thus (ii) is necessary for

non-degeneracy.

On the other hand, if ac− b2 is not in (πZ)2 {0}, we know that y must be identically

zero. If a ̸= 0 then y′ = ax implies that x is also identically zero. Thus (i) and (ii)

are sufficient to establish non-degeneracy. This completes the proof. □

2.3.1.2. Definition of the chambers. For each k > 1, define the “chamber”

Uk,± =
{
(a, b, c) : k2π2 < ac− b2 < (k + 1)2π2 and ± a > 0

}
,

and, for k = 0, define

U0,± =
{
(a, b, c) : −∞ < ac− b2 < π2 and ± a > 0

}
.

By §2.3.1.1, these open sets cover the space of matrices S which lead to non-degenerate

asymptotic operators.

[ 1 0
0 −1 ]

a

c

Figure 2. The chambers (shown is the plane b = 0). The shaded
region contains those matrices with µCZ = 0. The red dots are matrices
of the form kπI, for k ∈ Z (these correspond to degenerate asymptotic
operators).

Lemma 2.8. Each chamber Uk,± is path-connected.
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Proof. First let us treat the case k > 0. It is clear that Uk,± ∩ {b = 0} is connected,

as it consists of one branch of the region C1 < ac < C2 trapped between two hyper-

bolas (with C1 < C2 both positive). Thus it suffices to explain how to connect each

(a, b, c) ∈ Uk,± to a point of the form (a′, 0, c′) while remaining in Uk,±.

Let K = a(0)c(0) − b(0)2, which is a positive constant, and let b(t) = (1 − t)b(0).

Evolve a, c in time according to the formula:

a(t) =

√
K + b(t)2√
a(0)c(0)

a(0) and c(t) =

√
K + b(t)2√
a(0)c(0)

c(0).

This is well-defined since a(0)c(0) is necessarily positive. Then we see that the quan-

tity a(t)c(t) − b(t)2 = K remains constant, and hence the path remains in Uk,±, as

desired.

The case when k = 0 is easier. Observe that b(t) = etb(0), a(t) = a(0), c(t) = c(0)

defines a path which remains in U0,±. In other words, we can make the b coordinate

arbitrarily large, and thereby make ac − b2 arbitrarily negative. Then, once b is

sufficiently large, we can move a to either +1 or −1 and c to −a. Then we can send

b back to 0. Thus any point in U0,+ can be joined to [ 1 0
0 −1 ], and any point in U0,−

can be joined to [ −1 0
0 1 ].

This completes the proof. □

It is clear that any path S(r) which remains in a given chamber will satisfy

µCZ(−J∂t − S(r)) = const.

Since we know that µ(−J∂t −C) = 0 where C is the matrix of complex conjugation,

we conclude that µCZ(−J∂t − S) = 0 for any S ∈ U0,+.

Corollary 2.9. Every 2×2 symmetric matrix S, with A = −J∂t−S non-degenerate,

can be joined to a matrix Sk = (πk+1)I, k ∈ Z, without leaving the chamber it started

in. In other words, if S has a > 0 (resp., a < 0) and det(S) ∈ (π2k2, π2(k+1)2), then

S lies in the same chamber as Sk (resp., S−k). □

2.3.1.3. Computing the Conley-Zehnder indices for the representatives. Since the Conley-

Zehnder index is constant on each chamber, it suffices to compute µCZ for each cham-

ber representative Sk = (πk + 1)I. To compute this, we will use Theorem 2.2 to

determine how the index changes with the trivialization.

Let X0 be the standard Hermitian frame for (C,R) → (R × [0, 1],R × {0, 1}) (i.e.,

X0 = 1). Fix A = −i∂t−S(t), and consider D = ∂s−A, i.e., D(uX0) = (∂su−Au)X0.

By Theorem 2.2, we know that Index(D) = 0. We will now recompute this index

using a different set of asymptotic trivializations.
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Let X− = X0 and X+ = eπitX0. We compute:

D(uX−) = D(uX0) = (∂su+ i∂tu+ S(t)u)X−,

D(uX+) = D(ueπitX0) = (∂su+ i∂tu+ e−πitS(t)eπitu− πu)X+.

Thus we have A− = −i∂tu− S(t) = A and A+ = −i∂t − e−πitS(t)eπit + π. The index

formula then gives:

Index(D) = µMas(X
+, X−) + µCZ(A

+)− µCZ(A
−) = 0.

Therefore, in order to compute the index difference, it suffices to compute the Maslov

number associated to the change in trivialization. Let β : R → [0, 1] be a cut-off

function which equals 0 for s ≤ 0 and equals 1 for s ≥ 1 and satisfies β′(s) > 0 for

s ∈ (0, 1). Set σ = (1− β(s)) + β(s)e2πit. It is clear that σ agrees with X− ⊗X− for

s ≤ 0, agrees with X+ ⊗X+ for s ≥ 1, and always equals 1 along the boundary (the

canonical section of R⊗R → R×{0, 1}). Moreover, it is clear that σ(s, t) = 0 if and

only if e2πit = −1 and β(s) = 1/2, in which case we have:

dσ = β′(s)(e2πit − 1)ds+ 2πiβ(s)e2πitdt =⇒ dσ = −2β′(s)ds− πidt,

hence the single zero is transverse (since we assume β′(s) > 0 whenever β(s) ∈ (0, 1)).

Moreover, the linearization is orientation preserving. It follows that the signed count

of zeros of σ is +1, and hence, by definition, µMas(X
+, X−) = +1. Thus we conclude

that:

µCZ(A
+)− µCZ(A

−) = −1.

Now, let us apply this with A− = −i∂t − 1, which has µCZ = 0, to obtain:

µCZ(−i∂t − 1 + π) = −1.

Repeating the argument, we conclude that µCZ(−i∂t − 1 + kπ) = −k. Recalling that

Sk = (kπ + 1)I, we conclude that µCZ(−i∂t − S−k) = −k for k ≥ 0. In a similar

fashion, we conclude that µCZ(−i∂t − 1− kπ) = k, and thereby obtain:

(2.3) µCZ(−i∂t − Sk) = k,

for all k ∈ Z. See Figure 3.

Example 2.10. Consider an operator D = ∂s + i∂t − δρ(s) where ρ(s) → ±1 as

s → ±∞, acting on sections of the trivial line bundle over a strip. Here 0 < δ < π.

Then:

Index(D) = µCZ(−i∂t + δ)− µCZ(−i∂t − δ) = −1.

Such an operator appears, for instance, when one considers ∂s + i∂t acting on expo-

nentially weighted Sobolev spaces.



18 2. CONLEY-ZEHNDER INDICES ASSOCIATED TO AN ASYMPTOTIC OPERATOR

a

c
0

1

2

3

−1

−2

−3

−4

Figure 3. The chambers in the space of 2 × 2 matrices [ a b
b c ] (shown

is the plane b = 0) and the Conley-Zehnder indices of the associated
asymptotic operators. The red dots are matrices of the form kπI, for
k ∈ Z. Recall that the chambers are partioned by equations of the form
ac = b2 + π2k2, and so as b departs from 0 the chambers expand away
from 0.

2.3.2. Formula for the Conley-Zehnder index of an autonomous split operator. Sup-

pose that A = −J∂t−S is an autonomous split non-degenerate asymptotic operator.

Let S = diag(S1, . . . , Sn) be the block decomposition, and let Si = [ ai bi
bi ci

].

Theorem 2.11. The Conley-Zehnder index of A is given by

n∑
i=1

µCZ(−J∂t − Si),

where µCZ(−J∂t − Si) is equal to:

(i) +k if ai > 0 and det(Si) ∈ (π2k2, π2(k + 1)2),

(ii) −k − 1 if ai < 0 and det(Si) ∈ (π2k2, π2(k + 1)2),

(iii) 0 if ai > 0 and det(Si) < π2,

(iv) −1 if ai < 0 and det(Si) < π2.

Proof. The formulas for µCZ(−J∂t − Si) when Si is a 2 × 2 block follow from the

results of §2.3.1.1-2.3.1.3.

The fact that A = −J∂t − S and Aref = −J∂t −C are both split implies that we can

find a split D = ∂s −As which interpolates from Aref to A. It is well-known that the

Fredholm index of a split operator is the sum of the Fredholm indices. Since

µCZ(A) = Index(D),

the desired result follows. □

Example 2.12. Suppose that S = diag([ a1 0
0 0 ], . . . , [

an 0
0 0 ]), where all ai are non-zero.

Show that µCZ(−J∂t−S) is equal to minus the number of ai which are negative. This
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kind of asymptotic operators appear when one linearizes the Reeb chord equation in

1-jet space, see §3.6.2.1.

2.4. Conley Zehnder indices as a spectral flow

In this section we show that µCZ(A1)−µCZ(A0) is a spectral flow, following [Wen20,

§3.3], [Flo89a, pp. 595], and [RS95]. The arguments in this section work equally well

for orbits and for chords. The main result is:

Theorem 2.13. If µCZ(A1) = µCZ(A0), then A1 is homotopic to A0 within the space

of non-degenerate operators.

Proof. We defer to §6 for any analytical concerns about Cauchy-Riemann operators

on infinite strips and cylinders.

The index formula proves that µCZ(A1) − µCZ(A0) equals the Fredholm index of an

operator of the form ∂s − As where As = A0 for s very negative and As = A1 for

s very positive. We are free to make As = −J∂t − S(s, t) with S(s, t) symmetric,

i.e., As always remains self-adjoint. By the arguments in [Wen20, Appendix C], a

generic choice As will have the property that:

(i) There exists a smooth function λ : Z×R → R and a smoothly varying eigenbasis

φk(s, t) so that Asφk(s, t) = λ(k, s)φk(s, t) =: λk(s)φk(s, t).

(ii) All eigenvalues are simple; i.e., the function Z× {s} → R is injective for all s.

(iii) The function λ is transverse to 0.

Let us define the spectral flow sf to be (minus) the number of preimages in λ−1(0)

counted with sign. The goal is to prove that sf = µCZ(A1)− µCZ(A0).

By the stabilized kernel gluing operation proved in §7 we know that µCZ(A1)−µCZ(A0)

behaves additively under a certain concatenation/gluing operation. Via an appropri-

ate sequence of deformations of our operator, breaking it into a sequence of glued

strips, we see that it suffices to prove sf = µCZ(A1)−µCZ(A0) in the case when λ−1(0)

consists of a single point, i.e., one of the eigenvalues crosses 0. Without loss of gener-

ality, let us suppose it is the k = 0 eigenvalue. Via another kernel gluing argument,

if necessary, we may localize at the crossing and suppose that:

λ0(s) ∈ (−ϵ, ϵ) and λk(s) ̸∈ [−ϵ, ϵ] for all k ̸= 0 and s ∈ R.

Now observe that µCZ(A1 ± ϵ) = µCZ(A0 ± ϵ). This is because during the path from

A0 to A1 no eigenvalue ever hits the lines λ = ±ϵ, and hence the path remains in the

space of non-degenerate asymptotic operators. The Fredholm index of D = ∂s−As±ϵ
is 0, as it is homotopic to the translation invariant operator ∂s−A1±ϵ (or ∂s−A0±ϵ).
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Now, if λ0(−∞) < 0 < λ0(+∞), then A1 + ϵ is homotopic to A1. Thus

(2.4) µCZ(A1)− µCZ(A0) = µCZ(A0 + ϵ)− µCZ(A0).

On the other hand, if λ0(−∞) > 0 > λ0(+∞), then

(2.5) µCZ(A1)− µCZ(A0) = µCZ(A0 − ϵ)− µCZ(A0).

We will now show that (2.4) equals −1 and (2.5) equals +1. This will conclude the

proof that Fredholm index, namely µCZ(A1) − µCZ(A0), is the sum of the negative

crossings minus the sum of the positive crossings, which is, by definition, sf.

The benefit of the reduction to the comparison of A0 ± ϵ and A0 is that the eigen-

functions remain constant during the linear homotopy As = A0+β(s)ϵ, where β(s) is

a cut-off function which increases from 0 to 1. Thus, let φk(t) be such an eigenbasis.

A general solution to ∂su− Asu = 0 can be written as

u(s, t) =
∑
k∈Z

uk(s)φk(t),

where uk(s) are smooth solutions which decay exponentially in the ends, as can be

proven by applying Lemma 6.19 applied in the ends where As is constant. This

implies:

∂su− Asu = 0 =⇒
∑
k∈Z

(u′k(s)− λk(s)uk(s))φk(t).

This means that u′k(s) − λk(s)uk(s) = 0. Let Λk(s) be an anti-derivative for λk(s),

and thererby conclude that the derivative of fk(s) = e−Λk(s)uk(s) vanishes, hence

fk(s) is constant. Clearly if k ̸= 0, |λk(s)| is uniformly bounded below by ϵ. hence

e−Λk(s) has 0 as a limit point. In particular, if fk ̸= 0, then uk(s) is unbounded.

Hence fk = 0 and thus uk(s) = 0. Thus the only possible solution is of the form

u(s, t) = u0(s)φ0(t), where u0(s) = ceΛ0(s). In order for this to be bounded we must

have λ0(−∞) > 0 > λ0(+∞), and in this case we have a 1-dimensional contribution

to ker(∂s − As). This proves that (2.5) gives +1.

Let us now analyze the cokernel; i.e., let v =
∑
vk(s)φk(t) be orthogonal to the image

of ∂s − As. Then integration by parts gives:

−
∫

(∂svk(s) + λk(s)vk(s))uk(s)ds = 0,

and hence eΛk(s)vk(s) = const. The same argument shows that vk(s) must be 0 for

k ̸= 0, and v0(s) = ce−Λ0(s)φ0(t) is only a solution when λ0(−∞) < 0 < λ0(+∞).

This proves that (2.4) gives −1.



2.5. INTERSECTION THEORETIC DEFINITION OF THE CONLEY-ZEHNDEX INDEX FOR CHORDS21

Our goal is now to show that sf = 0 implies A0 is homotopic to A1 through the space

of non-degenerate operators. We follow the argument from [Wen20, Theorem 3.53].

As we did above, break the cylinder into consecutive regions where each region has

a single “up” crossing or “down” crossing. The signed count of crossings is zero.

This means there must be an up crossing followed by a down crossing, or vice-versa.

Consecutive pair of crossings with the opposite signs can be cancelled by a straight-

forward operation described below. We will clearly be able to iteratively cancel all

the crossings, until there are none left. Then the resulting As will be a path from

A0, A1 through the space of non-degenerate asymptotic operators.

To complete the proof, we explain the cancellation step. Suppose As has one down

crossing followed by one up crossing. Thus λ−1
0 ((−∞, 0]) is a compact interval [a, b].

Pick a positive function h supported in (a−ϵ, b+ϵ) so that h+λ0 > 0 and h+λ−1 < 0

hold at all points. This can be achieved since λ−1 < λ0 holds at all points on

[a− ϵ, b+ ϵ]. Then As + h is a path from A0 to A1 which remains non-degenerate, as

desired. □

A nice corollary of Theorem 2.13 is that we obtain an intersection theoretic definition

of the Conley-Zehnder index for chords.

2.5. Intersection theoretic definition of the Conley-Zehndex index for chords

Let F(t) be the fundamental solution of z′(t) = JS(t)z(t), so that z(t) = F(t)z(0)

solves the ODE with initial condition z(0).

Consider L(t) = F(t)Rn as a path of Lagrangians in R2n. This is possible since F(t)

is valued in the symplectic group. Consider the special path defined as:

L∗(t) = diag(ei(1−t), . . . , ei(1−t))Rn.

This starts at the rotated Lagrangian diag(ei, . . . , ei)Rn (rotated by 1 radian in each

R2 factor), and rotates clockwise back to Rn in time 1.

Let L̃(t) be the (continuous) concatenation of L∗(t) with L(t). The non-degeneracy

assumption implies that L̃(1), L̃(0) are both transverse to Rn.

Introduce the set M of Lagrangians L which are not transverse to Rn (in the La-

grangian Grassmannian L = U(n)/O(n), see §3.1.4). This set M =M1 ∪M2 ∪ . . . is
stratified in a natural way by letting Mk be the space where dimL ∩ Rn = k. This

set M is well studied in symplectic topology, and we have the following two facts:

(i) Mk has codimension k(k + 1)/2,

(ii) the velocity vector field of the circles t 7→ diag(eiπt, . . . , eiπt)L coorients M1,
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See [Arn67, Lemma 3.2.1, 3.5.1]. In particular, M1 is codimension 1 and M2 is

codimension 3. Moreover, M1 can be cooriented in a natural way. Standard results

in transversality theory imply that the homological intersection number between L̃(t)

and M is invariant under arbitrary homotopies of which keep L(1) disjoint from M .

Let us denote this quantity M(A).

Theorem 2.14. M(A) = µCZ(A).

Proof. Let Li(t) = Fi(t)Rn be the path of Lagrangians associated to asymptotic

operators Ai. By the integral condition for non-degeneracy in §2.1, if A0 is homotopic

to A1 through the space of non-degenerate asymptotic operators, then L̃0(t) will

be homotopic to L̃1(t) with endpoints remaining disjoint from M . Thus M(A0) =

M(A1). Theorem 2.13 implies that µCZ(A0) = µCZ(A1) is a sufficient condition for the

existence of a homotopy. Thus, it suffices to prove the theorem for the representative

with µCZ(A) = k, namely the one with:

S = diag(1 + kπ, 1, . . . , 1).

We have L(t) = diag(e(1+kπ)it, eit, . . . , eit). Thus L̃(t) is the path which starts at L∗(0),

rotates back by ei, and then rotates forwards by ei, and then continues rotating the

first coordinate only for an extra kπ radians. Clearly, this path is homotopic with

fixed endpoints to the path

L′(t) = diag(eiekπit, ei, . . . , ei)Rn.

This has k intersections with the top strata of M .

To analyze the signs of the intersection, observe that the velocity vectors of all the

curves:

(2.6) diag(ei(t−t0)λ1 , . . . , ei(t−t0)λn)L′(t0)

are transverse to M1 provided λ1 > 0 (assuming L′(t0) ∈M).

Since L′(t) = diag(ekπi(t−t0), 1, . . . , 1)L′(t0), we can smoothly homotope the velocity

at t = t0 through vectors transverse to M1 until it matches the vector field from (ii).

This completes the proof. □

See [RS93] for another approach to defining the Conley-Zehnder indices via intersec-

tion theory.

2.6. Conley Zehnder indices for orbits

In this section we compute the Conley-Zehnder indices for split and autonomous

asymptotic operators on R/Z. It suffices to consider the line bundle case.
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Interestingly, in this case, only operators with µCZ ∈ {0}∪(1+2Z) can be represented

by autonomous asymptotic operators. The Conley-Zehnder indices for such operators

are shown in Figure 4.
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Figure 4. Chambers in the space of 2 × 2 symmetric matrices [ a b
b c ].

On the left is the plane b = 0, while on the right is when b ̸= 0. The
chamber walls are cut out by the equation ac−b2 ∈ (2πZ)2, and the red
dots correspond to matrices in 2πZ. Operators with even and non-zero
Conley-Zehnder index cannot be represented in this figure.

Our arguments do provide a full family of representatives. Indeed, we have:

Proposition 2.15. For all δ ̸= 0, the operator:

(2.7) Ak := −J∂t − πk − δe−2πkitC

has Conley-Zehnder index equal to k, where C is the 2× 2 matrix of complex conju-

gation.

Proof. The proof is completed at the end of §2.6.0.3. □

Remark 2.16. For k odd, this operator can be deformed to an autonomous operator

simply by letting δ → 0. When k = 0, the operator is already autonomous. However,

when k is even and non-zero, this operator cannot be deformed to an autonomous

one without becoming degenerate.

Remark 2.17. If we are working with n > 1, then, since (1 + 2Z) + (1 + 2Z) = Z,
we can represent all the Conley-Zehnder indices by autonomous split operators.

2.6.0.1. Solving the autonomous ODE. The argument is similar to the one given in

§2.3.1.1; if x(t) + iy(t) is 1-periodic and solves the autonomous ODE,[
x′(t)

y′(t)

]
= J

[
a b

b c

][
x(t)

y(t)

]
⇐⇒

x′(t) = −bx(t)− cy(t)

y′(t) = ax(t) + by(t),



24 2. CONLEY-ZEHNDER INDICES ASSOCIATED TO AN ASYMPTOTIC OPERATOR

then we can differentiate both sides of the above equation to conclude that

x′′(t) + ω2x(t) = 0 and y′′(t) + ω2y(t) = 0,

where ω2 = ac− b2. There are no non-zero solutions when ac− b2 < 0.

This can be solved explicitly and we conclude that x(t), y(t) are first order trigono-

metric polynomials with frequency ω. The requirement that x and y be 1-periodic

implies that ω ∈ 2πZ (or x = y = 0).

Thus we conclude:

Proposition 2.18. The asymptotic operator A = −J∂t− [ a b
b c ] on R/Z is degenerate

if and only if ac− b2 ∈ (2πZ)2. □

This implies that the chambers are as shown in Figure 4. It remains only to determine

the Conley-Zehnder index of each chamber.

2.6.0.2. The dependence of the Conley-Zehnder index on the trivialization. Following

the same argument as in §2.3.1.3, we deduce the following:

Proposition 2.19. For any non-degenerate asymptotic operator A = −J∂tu−S(t)u
on C → R/Z, we have µCZ(e

2πitAe−2πit)− µCZ(A) = 2.

Proof. The argument is the same as §2.3.1.3. The crucial aspect being that for

the non-standard asymptotic trivializations X− = X0 and X+ = e−2πitX0, we have

D = ∂s − A given by:

D(uX−) = (∂su+ J∂tu+ S(t)u)X−

D(uX+) = (∂su+ J∂tu+ e2πitS(t)e−2πitu+ 2πu)X+.

Since Index(D) = 0 (as it is translation invariant), we conclude from the index formula

that:

−µMas(X
+, X−) = µCZ(e

2πitAe−2πit)− µCZ(A).

The Maslov number is easy to compute as the number of zeros of the section

σ(s, t) = (1− β(s)) + β(s)e−4πit.

There are two zeros, when t = 0.25, t = 0.75, and β(s0) = 1/2, and they contribute

with negative signs. This can be seen by computing linearization at the zeros:

−2β′(s)ds− 4πie−4πitβ(s)dt = −2β′(s0)ds+ 2πidt,

which is clearly orientation reversing. This completes the proof. □
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Since A = −J∂t − δC lies in the same chamber as A = −J∂t − C, for all δ ̸= 0, we

conclude by repeated application of Proposition 2.19 that

A2k,δ = −J∂t − δe2πkitCe−2πkit − 2πk

has Conley-Zehnder index equal to 2k. Moreover, A2k,δ is always non-degenerate for

δ ̸= 0 (since A0,δ is).

Remark 2.20. For odd k, consider

Ak,δ = −J∂t − δeπkitCe−πkit − πk.

We may interpret this as an operator on C∞(R/2Z) in an obvious fashion. This

operator is conjugate to an operator on C∞(R/Z) by the formula

2A(u(0.5t))(2t) = −J∂tu− (2δe2πitCe−2πkit + 2πk)u.

In particular, the extension of Ak,δ to C∞(R/2Z) is non-degenerate for all δ, and

hence the original operator Ak,δ is also non-degenerate for all δ ̸= 0.

2.6.0.3. Determining the Conley-Zehnder index when S = π. Proposition 2.18 implies

that A = −J∂t − π is non-degenerate. The goal of this section is to compute this

operator, as it is inaccessible, starting from Aref , via the reparametrization trick from

§2.6.0.2. The strategy is to use the spectral flow interpretation of the change in

Conley-Zehnder index along a path of asymptotics operators. The proof that the

spectral flow computes the Conley-Zehnder index is exactly the same as the case

for chords explained in §2.4. Indeed, the main reference for that section, [Wen20],

defines the Conley-Zehnder index for orbits as a spectral flow.

Consider the path given by:

Aτ = −J∂t −

[
π 0

0 π − τ

]
This becomes singular when τ = π, and then enters the chamber containing −J∂t−C,
which has µCZ = 1, by definition. The eigenvalue equation Aτu = λu reduces to

x′(t) = −(π + λ− τ)y(t) and y′(t) = (π + λ)x(t),

which is singular when λ = τ − π (and when λ = −π), and all the other eigenvalues

remain far from 0 for τ ∈ [0, π + ϵ). See the left part of Figure 4. Moreover, the

1-dimensional eigenspace when λ = π− τ is simply y(t) = const, x(t) = 0. Since this

is a single up-crossing, i.e., the eigenvalue went from negative to positive as τ crossed

the a-axis, we conclude from the spectral flow is decreased by 1 at the end of the
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path. Thus we conclude that

µCZ(−J∂t − π) = +1.

Then by applying the change of trivialization trick in 2.6.0.2, we conclude that

µCZ(−J∂t − kπ) = k.

for all odd k. This completes the proof of Proposition 2.15 and Figure 4.

2.7. Conley-Zehnder indices relevant for exponential weights

Recall that when we place exponential weights on a positive puncture, the asymptotic

operator changes to A−δ, while at negative punctures the asymptotic weight changes

to A + δ. We are particularly interesting in the case when A = −J∂t for n = 1, as

this case is needed in §4.2.2. Let d = µCZ(A + δ). By inspecting the chambers in

Figures 3 and 4 we conclude:

(i) negative boundary punctures have d = 0,

(ii) positive boundary punctures have d = −1,

(iii) negative interior punctures have d = +1,

(iv) positive interior punctures have d = −1,

The reader is referred to [BM04, pp. 129] for a similar discussion.



Chapter 3

Asymptotic operators of Reeb chords and orbits

let Λ ⊂ (Y, ξ, α, J) be Legendrian, and let c be a non-degenerate Reeb chord or orbit.

The linearization of the Reeb flow ODE at c gives an asymptotic operator. How-

ever, we need coordinates to linearize. The choice of coordinates leads to interesting

homotopical problem. In this chapter, we describe the relationship between choices

of coordinates, the resulting asymptotic operators, and admissible sections s of the

square K⊗2 of the canonical bundle.

3.1. Admissible coordinates

Let Φt : B(1)2n → Y 2n+1 be coordinates so that:

(i) t 7→ Φt(0) is some (positive) parametrization of c,

(ii) the time derivative Φ′
t is transverse to the space derivative dΦt,

(iii) dΦt(0) : R2n → ξ is a unitary or symplectic isomorphism, and

(iv) Φ0(Rn) = Λ0 and Φ1(Rn) = Λ1 (for chords), or

(v) Φt = Φ1+t (for orbits).

Comparing φ = dΦ1
t (0)

−1dΦ0
t (0) yields Sp(2n) or U(n)-valued transition functions

which take boundary values in GLn(R) ∩ Sp(2n) or O(n).

Remark 3.1. By declaring two charts to be equivalent if they agree except with

different radii δ1 < δ2, admissible charts should be considered as germs, although we

will typically suppress this aspect in our explanations and notation. In this germ

sense, we define a homotopy of admissible coordinate charts to be a homotopy Φτ
t of

smooth maps B(δ) → R2n which satisfy (i)-(v) for each τ , for some δ small enough.

Remark 3.2. For p ∈ B(1), the time derivative is Φ′
t(p) =

d
dϵ ϵ=0

Φt+ϵ(p). The space

derivative satisfies dΦt(p)v = d
dϵ
|ϵ=0Φt(p + ϵv). The condition that Φt(0) = c(t)

constrains Φ′
t(0) to lie in the positive half-line determined by R(Φt(0)). If we use a

constant speed parametrization, then Φ′
t(0) = TR(Φt(0)) where T is the action of c.

3.1.1. Symplectic versus unitary. The inclusion of the space of unitary coordinates

with constant speed parametrizations into the space of symplectic coordinates is a

weak homotopy equivalence. Indeed:

27
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Claim 3.3. Let Φπ
t , π ∈ D, be a parametrized family of symplectic coordinates, so

that Φπ
t are constant speed unitary coordinates for π ∈ ∂D. Then Φπ

t can be deformed

relative ∂D so as to make it unitary and have constant speed everywhere.

Proof. The argument establishing this splits into two parts.

Let c(π) := t 7→ Φπ
t (0). Every c(π) is some parametrization of the same chord or

orbit c. By a smooth deformation replacing Φπ
t by Φπ

t+ρ for appropriate ρ, we may

suppose that all c(π) have constant speed. If Φπ
t already had constant speed on

the boundary, then we can do this deformation leaving Φπ
t unchanged for π ∈ ∂D.

Thus the inclusion of symplectic coordinates with constant speed into the space of

symplectic coordinates is a weak homotopy equivalence.

Next we analyze the unitary versus symplectic aspect of the claim. There certainly

exists some unitary frame for ξ along c, and we will use this as a reference. Then

dΦπ
t (0) is represented by a symplectic matrix for each π. It is well-known that Sp(2n)

deformation retracts onto U(n), and hence there exists a smooth family of symplectic

matrices φπ
t (s) so that φπ

t (0) = 1 and dΦπ
t (0)φ

π
t (1) is unitary. If dΦπ

t (0) is already

unitary for given t, π, then the construction we have in mind has φπ
t (s) = 1 for all s.

We interpret φπ
t as a family of (linear) maps B(1) → R2n.

Then, in the sense of germs, Φπ
t ◦ φπ

t (s) is a homotopy of constant speed symplectic

coordinates which is unitary when s = 1. This proves the claim. □

3.1.2. The space derivative classifies coordinates. Fix an auxiliary unitary frame along

c as a reference, and suppose that c spans TΛ along the boundary.

Claim 3.4. The projection map Φt 7→ (Φt(0), dΦt(0)) which sends each coordinate

system onto the induced path/loop in c×Sp(2n) (taking boundary values in GLn(R)∩
Sp(2n)) is a weak-homotopy equivalence.1

The argument establishing this is certainly well-known to experts.

Proof. Suppose that Φπ
t is a family of coordinate systems, defined for π ∈ ∂D, and

suppose that (fπ(t), Fπ(t)) formally extends (Φπ
t (0), dΦ

π
t (0)) to D. The goal is to

show that we can extend Φπ
t so that the induced data (Φπ

t (0), dΦ
π
t (0)) is homotopic

to (fπ(t), Fπ(t)) relative ∂D.

Using f, F , we can define a coordinate system by the formula:

Ψπ
t (x) = Expfπ(t)(Fπ(t) · x ·X),

1Note that GLn(R) ∩ Sp(2n) deformation retracts onto GLn(R) ∩ U(n) = O(n) when we use the
retraction induced by polar decomposition.
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where X was the chosen frame (and Λ is totally geodesic). Then Ψπ
t and Φπ

t agree to

first order for π ∈ ∂D. In particular, there exist h, k = O(x2) so that:

Ψπ
t+h(x+ k) = Φπ

t (x).

We can extend h, k from ∂D(1) to all of D(1) using a cut-off function of a collar

coordinate (keeping them O(x2) for each π, t). Thus we can extend Φπ
t (x) to all of

D. This extension even has the property that Φ(0), dΦ(0) = f, F . □

3.1.3. Path component classification of coordinates around an orbit. Let γ be an em-

bedded orbit, and let X be an auxiliary unitary frame for γ∗ξ. Consider the map

which assigns to each orbit coordinate system (centered on any cover of γ) the loops

Φt(0) ∈ γ and det dΦt(0) ∈ S1. Consider this map as valued in the space of pairs

(f(t), d(t)) where f(t) has positive covering degree. Then the map is a bijection on

π0. Thus the path components of the space of coordinates with fixed geometric orbit

γ are in bijection with N× Z. The map to Z is non-canonical.

3.1.4. Path component classification of coordinates around a chord. We define the

Lagrangian Grassmannian L by the fiber sequence O(n) → U(n) → L. The following

well-known argument classifies based loops in L.

Proposition 3.5. π1(L,Rn) ≃ π0([0, 1];U(n), O(n)) ≃ Z via det2.

Proof. Apply the five-lemma to the following diagram, where the rows are exact:

π1O(n) π1U(n) π1(L) π0(O(n)) π0(U(n))

π1G π1U(n) π1(S
1) π0(G) π0U(n),

det2

This completes the proof. See [Arn67]. □

Theorem 3.6. Let c be a Reeb chord from Λ0, p0 to Λ1, p1. The map which assigns

each coordinate system the data of:

(i) the c-valued map f(t) = Φt(0), joining p0 to p1 (with positive action),

(ii) the Z/2-valued sign induced by whether dΦ0(0) : Rn → TΛ0 preserves orienta-

tion,

(iii) the S1-valued loop det2 dΦt(0) (since detC maps O(n) into ±1),

is an isomorphism on π0. Observe that the data of (i) is trivial if c does not lie on a

Reeb orbit. Otherwise the path component data in (i) is determined by the action,

and can be identified with N.
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Proof. The previous analysis shows that f(t), dΦt(0) captures the full homotopy

groups of the space, where dΦt(0) is thought of as a U(n)-valued function taking

boundary values in O(n). The above long-exact sequence argument shows that if

deg det2 dΦt(0) = 0, then dΦt(0) can be homotoped to a constant map in O(n). The

Z/2 valued sign distinguishes the two components of O(n). The details are left to the

reader. □

3.2. Choosing coordinates and the square of the canonical bundle

Recall the definition of the canonical bundle K = detC(ξ, J) from §1.3.3. The iso-

morphism class of detC(ξ) is independent of J , but in the following it will be useful

to consider K as a fixed unitary line bundle over Y (rather than as an isomorphism

class).

Since Λ is a Legendrian there is a canonical map detR TΛ → detC(ξ)|Λ, namely, the

map induced by inclusion. To see why, observe that dα|Λ⊗Λ = 0 implies that JΛ

is orthogonal to Λ using the metric g. This implies that any basis of Λ induces a

complex basis for ξ.

The real-line bundle detR TΛ may or may not be orientable. However, we can always

define the oriented ray l ∈ K2 as l = (e1 ∧ · · · ∧ en)⊗2 where e1, . . . , en is any basis.

Let −l denote the negative ray (−∞, 0].

Let Φt be admissible coordinates centered at an orbit or chord c. Write φ(t) =

detC dΦt(0)1, where 1 = e1∧· · ·∧en is the standard basis of detC(Cn). This definition

makes sense even if Φt is only symplectic, as we can write:

φ = dΦt(0)e1 ∧ · · · ∧ dΦt(0)en,

and the symplectic condition will guarantee this is nowhere zero.

3.2.1. The chord case. Clearly, in the chord case, φ(t)⊗2 ∈ l for t = 0, 1. If s is

another section of K2 which is non-vanishing along c, and satisfies s ̸∈ −l on the

boundary, then we can compare φ2 and s and get an integer valued winding number,

analogous to the relative winding numbers requiring that φ2 and s both lie in l along

the boundary, see 4.2.

Then we simply require that the relative winding number between φ2 and s is zero.

This determines the homotopy class of detC dΦt(0)
2. By Theorem 3.6, we conclude

that s specifies two homotopy classes of coordinates, differening by how dΦt(0) orients

TΛ0. In particular, we can represent both homotopy classes by Φt and Φt ◦ ρ where

ρ = diag(−1, 1, . . . , 1). In §3.4 we show that the asymptotic operators computed in

either homotopy class have the same Conley-Zehnder index.
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3.2.1.1. Digression on a winding number. The homotopy classes of non-vanishing

sections t satisfying t ̸∈ −l at both endpoints is non-canonically identified with Z via

a relative winding number. The action of Z on this space via t 7→ e2πitkt acts freely

and transitively on the set of homotopy classes.

A geometric explanation is as follows: if t1, t2 are two sections, first deform t1, t2

(remaining disjoint from −l) so that t1, t2 take boundary values in the right half

plane (as determined by l). Then define θ = t1/t2, and observe that θ is non-zero

takes boundary values away from (−∞, 0]. By perturbing θ slightly, we can define

an integer winding number by counting the number of preimages of (−∞, 0]. It

is straightforward to see that (a) this does not depend on the choices mode (since

C (−∞, 0] is contractible), and (b) this winding number classifies the homotopy

classes of sections t, as desired.

3.2.2. The orbit case. In this case, a section s of K2 determines at most a unique

homotopy class of coordinates Φt, via the requirement that s is homotopic to φ2. If

we require that s = c ⊗ c where c is a non-vanishing section of K along c, then the

homotopy class of coordinates induced by s is non-empty (otherwise it is empty).

3.3. The asymptotic operator as a linearization

The asymptotic operator is defined by linearizing the Reeb flow equation at a solution

c. To do so, fix an admissible symplectic coordinate chart Φ.

Let Φ∗TY denote the bundle over S ×B(1) whose fiber at (t, p) is TYΦt(p). Let Π be

the section of Hom(Φ∗TY,R2n) → S ×B(1) defined by:

Πt(p) · dΦt(p) = id and Πt(p)(R(Φt(p))) = 0.

It is clear by property (iv) that any path between the same Legendrians which is

sufficiently C1 close to c will be of the form t 7→ Φt(η(t)) after reparametrization,

where η(0), η(1) ∈ Rn. Similarly, by (v), any loop sufficiently C1 close to c will be of

the form t 7→ Φt(η(t)). The degree of C1 closeness necessary is that the path should

be positively transverse to the contact distribution.

This follows the Reeb flow if and only if Πt(η(t))
∂
∂t
Φt(η(t)) = 0 for all t, which expands

to:

(3.1) Πt(η(t))(dΦt(η(t))η
′(t) + Φ′

t(η(t))) = 0 =⇒ η′(t) + Ft(η(t)) · η(t) = 0,

where Ft(x) · x = Πt(x)Φ
′
t(x) for all x ∈ B(1); this factorization is possible since the

right hand side vanishes when x = 0.
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Definition 3.7. The linearized Reeb flow operator associated to the admissible co-

ordinate system Φt is defined to be:

(3.2) JA(η) = η′(t) + Ft(0) · η(t).

The operator A is called the asymptotic operator associated to Φt. Clearly (3.2) is

the linearization of (3.1). It is clear that smooth homotopies of admissible coordinate

systems yield smooth homotopies of asymptotic operators.

Lemma 3.8. We have Ft(0) = −JS(t) for a family of symmetric matrices S(t), where

J is the standard complex structure on R2n. As a consequence, A = −J∂t − S(t).

Proof. It is clear that in the standard basis for TB(1) = R2n we have

(3.3) Ft(0)
∂

∂xi
=

∂

∂xi
(Πt(x1, . . . , x2n)Φ

′
t(x1, . . . , x2n)).

This derivative is a bit hard to compute, since Πt and Φ′
t are not sections of trivial

bundles, but rather sections of Hom(Φ∗TY,R2n) and Φ∗TY , respectively. Thus we

will introduce an auxiliary connection, denoted by ∇, on Φ∗TY . This connection will

be pulled back from a special connection on TY , which we now describe.

Let ∇ be a symmetric connection on TY which satisfies ∇Rdα = 0 and ∇R = 0.

Such a connection exists as it can be constructed in local coordinates which are well-

adapted to the Reeb flow, and then glued together using a partition of unity. More

precisely, if ∇k, k = 1, 2, . . . , N , are connections on open sets U1, . . . , UN which cover

Y , then, for a partition of unity ρ1, . . . , ρN subordinate to the cover, the formula

∇(X) =
∑

∇k(ρkX)

defines a connection on all of TY . Moreover, if each ∇k satisfies ∇kR = 0, ∇k
Rdα = 0

and ∇k
XY −∇k

YX = [X, Y ] (for vector fields supported in Uk), then so will ∇. The

verification of these assertions is left to the reader.

Let ∇ denote the pull back connection on Φ∗TY , which we extend to connections on

Hom(Φ∗TY,R2n) by requiring that d(A · v) = ∇A · v + A · ∇v for all sections v.

Taking the derivative of (3.3) at x = 0 yields:

(3.4)
∂

∂xi
(Πt(x)Φ

′
t(x)) = ∇xi

Πt(0) · Φ′
t(0) + Πt(0) · [∇xi

Φ′
t](0).

Recalling that the connection was symmetric and Φ′
t is the time-derivative of the

smooth map (t, x) 7→ Φt(x), we conclude that ∇xi
Φ′

t(0) = ∇t[dΦt(0)]
∂
∂xi

. For the

other term, observe that:

Πt(x) ·R(Φt(x)) = 0 =⇒ ∇xi
Πt(x) ·R(Φt(x)) = 0,
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where we have used the fact that ∇R = 0. We know that Φ′
t(0) is proportional to

R(Φt(0)), thus (3.4) simplifies to

∂

∂xi
(Πt(x)Φ

′
t(x)) = Πt(0)[∇tdΦt(0)]

∂

∂xi
.

It follows that Ft(0) = Πt(0)∇tdΦt(0). We will now show that this is −JS(t) for a

symmetric matrix S(t).

Let ω denote the symplectic form on R2n. Recall that dΦt(0) : (R2n, ω) → (ξ, dα)

was a symplectic linear transformation, and hence Πt(0) : (ξ, dα) → (R2n, ω) is also

symplectic (as it is the inverse to dΦt(0)). Thus for v, w ∈ R2n we have

ω(v,Πt(0)∇tdΦt(0)w) = dα(dΦt(0)v,∇tdΦt(0)w),

where we use that dα(X1, dΦt(0)Πt(0)X2) = dα(X1, X2) since it holds for X2 ∈ ξ and

for X2 ∈ RR. Then, using that ∇Rdα = 0, and Φ maps ∂t proportionally to R along

x = 0, we conclude:

dα(dΦt(0)v,∇tdΦt(0)w) = −dα(∇tdΦt(0)v, dΦt(0)w) = −ω(Πt(0)∇tdΦt(0)v, w).

Thus ω(v, Ft(0)w) = −ω(Ft(0)v, w). Recalling that ω(v, w) = vTJw, we conclude

that

vTJFt(0)w = −vTFt(0)
TJw =⇒ JFt(0) + Ft(0)

TJ = 0,

which implies that JFt(0) is symmetric, as desired. □

3.3.0.1. Geometric criteria for non-degeneracy. Another important property is that

non-degeneracy of the asymptotic operator is equivalent to non-degeneracy of the

Reeb orbit or chord.

Lemma 3.9. Suppose that c is a non-degenerate Reeb orbit or Reeb chord from Λ0

to Λ1, in the sense that

(i-c) dφT
∗ (TΛ0)⊕ TΛ1 = ξc(1),

(i-o) dφT
∗ : ξ0 → ξ0 does not have 1 as an eigenvalue,

where φ denotes the Reeb flow and T is the action of c. Then the asymptotic operator

defined in (3.2) is non-degenerate.

Proof. We continue with the notation introduced in the proof of the previous lemma.

Suppose that η(t) lies in the kernel of A. Then

η′(t) = −Πt(0)∇tdΦt(0)η(t).

Let µ(t) = dΦt(0)η(t), considered as a section of c∗ξ. We compute

∇tµ(t) = dΦt(0)η
′(t) +∇tdΦt(0)η(t) = 0.
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Let φτ denote the Reeb flow by time τ . For any v ∈ ξc(0), the vector field dφτ (v)

defined along c(S) satisfies ∇Rdφ
τ (v) = 0. This is easy to prove; first extend v to a

vector field V on some transverse slice Σ passing tangent to ξ at c(0), and then extend

V to a neighborhood of c(0) by requiring that [V,R] = 0. Then we can extend V to

a neighborhood of a distant point φτ (c(0)) by requiring that dφτ ◦V ◦φ−τ = V . It is

clear that [V,R] = 0 still holds on this neighborhood. By symmetry of the connection

and the fact that ∇R = 0 we have:

∇RV = ∇VR + [R, V ] = 0.

In particular we conclude that ∇Rdφ
τ (v) = 0 holds along the Reeb flow line starting

at c(0). Thus, if µ(t) is any section defined along a Reeb flow line satisfying ∇Rµ = 0,

we must have µ(φτ (c(0))) = dφτ (µ(0)).

Thus µ(0) and µ(1) are related by dφT . However,

(i) in the chord case, µ(0) lies in the tangent space to Λ0 while µ(1) lies in the

tangent space to Λ1, and

(ii) in the orbit case, µ(0) is an eigenvector of dφT with eigenvalue 1.

Thus, in either case, non-degeneracy implies non-degeneracy of the asymptotic op-

erator. The converse implication is proved in a similar fashion. This completes the

proof. □

We will require one further fact about the time derivative Φ′
t for a later computation.

Lemma 3.10. The derivative of x 7→ α(Φ′
t(x)) vanishes at x = 0.

Proof. We use the same connection to take the derivative; we have

∂

∂xi
(α(Φ′

t(x))) = ⟨∇xi
α,Φ′

t(x)⟩+ ⟨α,∇xi
Φ′

t(x)⟩.

It is clear that ⟨∇xi
α,R(Φt(x))⟩ = 0, since ∇R = 0, hence ⟨∇xi

α,Φ′
t(0)⟩ = 0. Thus

it remains to show the second term vanishes at x = 0. We use symmetry of the

connection to obtain:

∇xi
Φ′

t(x) = ∇∂tdΦt(x)∂xi
.

Thus

⟨α,∇xi
Φ′

t(x)⟩ =
∂

∂t
⟨α, dΦt(x)∂xi

⟩ − ⟨∇∂tα, dΦt(x)∂xi
⟩.

The first term vanishes at x = 0. The second term also vanishes at x = 0 since ∂t is

mapped to a multiple of R when x = 0. This completes the proof. □
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3.4. Conley-Zehnder index associated to a Reeb orbit or chord

Let c be a non-degenerate Reeb orbit or chord of Λ, and let s be an admissible section

of K2.

The Conley-Zehnder index associated to this data is defined to be the Conley-Zehnder

index of the asymptotic operator A, using any symplectic coordinate system Φt in

the homotopy class(es) determined by s, as explained in 3.2.

3.4.1. Independence on the choice of orientation. In the chord case, there are two

homotopy classes of coordinates determined by s, and they differ by whether or not

dΦ0(0) : Rn → Λ0 preserves or reverses orientation. However, if ρ ∈ O(n) reverses

orientation, then Φt(ρx) has non-linear operator equal to:

η′(t) + ρ−1Πt(ρη(t))Φ
′
t(ρη(t)) = 0.

When we linearize this at η = 0, we obtain the asymptotic operator:

Aρ = −J∂t + ρ−1S(t)ρ.

If S(t) is split with respect to C ⊕ · · · ⊕ C, then it is easy to see that Aρ = A for

suitable choice of ρ, e.g., diag(−1, 1, . . . , 1). In general, since the Conley-Zehnder

index is defined as the Fredholm index of an operator of the form D = ∂s−As on the

strip, where As = Aref for s < 0 and As = A for s > 1, and Aref is split, we conclude

that the Conley-Zehnder index of Aρ equals the Conley-Zehnder index of A, even for

non-split A (we can just globally conjugate D by diag(−1, 1, . . . , 1) which does not

change the Fredholm index).

Thus we conclude that the Conley-Zehnder index does not depend on the orientation

assigned to Λ0.

3.5. Independence of the Conley-Zehnder index on the complex structure

Recall that the Conley-Zehnder index relied on a choice of section s of detC(ξ, J)
⊗2.

This bundle a priori depends on the choice of complex structure J . However, the

space of almost complex structures compatible with dα is contractible. Along any

path Jτ of dα-compatible almost complex structures, the bundles detC(ξ, Jτ )
⊗2 form

a complex line bundle over [0, 1]×Y . Parallel transport allows us to map any section

s of the first bundle to a section of the second bundle.

Now suppose that s is defined for detC(ξ, J0) and s ̸∈ −l holds along the Lagrangian.

We apply parallel transport to obtain a new section s′ for detC(ξ, J1)
⊗2 which is still

disjoint from −l along Λ (since parallel transport is linear). In this fashion, we obtain
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an identification between the homotopy classes of sections s′ which work for (J1,Λ)

and the homotopy classes of s which work for (J0,Λ0).

This identification respects the homotopy class of admissible coordinate systems, i.e.,

a coordinate chart is s-admissible if and only if it is s′-admissible.

3.6. Short Reeb chords in 1-jet spaces

In this section we describe how to construct admissible coordinate charts around Reeb

chords in 1-jet spaces, write down the linearized operators in these charts, and then

compute their Conley-Zehnder indices using the results of Chapter 2.

Let Y = J1(Λ) be the 1-jet space of an n-dimensional smooth manifold Λ. Recall

that every function f : Λ → R determines a 1-jet extension to a section Λf of Y → Λ.

We will typically identify Λ (the base of the fibration Y → Λ) with the canonical

section Λ0.

Recall that Y has a contact form α = dz − λcan so that Λ∗
fλcan = df , and Λ∗

fz = f .2

Clearly in this contact structure any Legendrian section of Y → Λ must be the 1-jet

of some function.

The Reeb chords joining Λf0 to Λf1 are in bijection with the critical points of f1 − f0

with positive critical values. The action (length) of each chord is equal to the critical

value. Let us call such critical points positive critical points.

For any Reeb chord c joining two germs of Legendrians Λ0,Λ1 which have non-singular

projection onto Λ, there are unique germs f0, f1 of smooth functions defined near

pr(p) ∈ Λ so that Λ0 = Λf0 and Λ1 = Λf1 , and p is a positive critical point of

f1 − f0. We do not consider Legendrians which have singular projection onto Λ at

the endpoints of Reeb chords in this section.

Lemma 3.11. The Reeb chord Λf0 → Λf1 associated to a positive critical point p is

non-degenerate if and only if f1 − f0 is Morse at p.

Proof. In canonical coordinates near p, i.e., z, x, y so that α = dz − ydx, with x

valued in D(1) ⊂ Rn, y valued in Rn, and x(p) = 0, we have

φτΛf0 =

{
y = df0,

z = f0 + τ.

The Reeb chord will be non-degenerate if and only if the intersection at τ = f1 − f0

is transverse. By linearizing in the x and τ directions, it is easy to see that we can

2Here the notation Λ∗
f means that we pull back from the total space of the fibration Y → Λ back to

the base via the section Λf .
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span any vector satisfying

z = arbitrary and y = ∇df0 · h and x = h.

Similarly when we linearize Λf1 with respect to x we can solve any vector of the form

z = df1 · k and y = ∇df1 · k and x = k.

The Reeb chord will be non-degenerate, by definition, if and only if we can solve for

every y, x as function of h, k:

y = ∇df0 · h+∇df1 · k and x = h+ k.

This is solvable if and only if y −∇df0 · x = (∇df1 −∇df0) · k is solvable, which is

precisely the Morse condition on f1 − f0. This completes the proof. □

3.6.1. Choosing s in 1-jet space. Pick a Riemannian metric g on Λ. This induces a

Levi-Civita connection on T ∗Λ, which induces a splitting TT ∗Λ = TΛ⊕ T ∗Λ. There

is a projection short exact sequence:

0 → R∂z → TY → TΛ⊕ T ∗Λ → 0,

which identifies ξ with TΛ ⊕ T ∗Λ. Extend J to all of ξ by requiring that the pro-

jection ξ → TΛ ⊕ T ∗Λ is holomorphic for the complex structure whose restriction

to TΛ acts by the isomorphism g∗ : TΛ → T ∗Λ. It follows from work in [CC22]

that −dλcan(−, J−) is the diagonal Riemannian metric on TΛ⊕ T ∗Λ, and hence the

projection ξ → TΛ⊕ T ∗Λ is unitary when the former is given the metric dα(−, J−).

The complex linear identification ξ ≃ TΛ⊕ T ∗Λ yields a real line subbundle

detR(TΛ)
⊗2 ⊂ detC(ξ)

⊗2

which has a canonical unit length section s(g).

Lemma 3.12. If Λf is a 1-jet section, then g(lf , s) > 0 where g is the unitary metric

induced by dα(−, J−), and lf is the canonical unit length section in detR(Λf )
⊗2.

Proof. With respect to the splitting the tangent space to Λf is spanned by

ei +∇df · ei ∈ TΛ⊕ T ∗Λ

where e1, . . . , en form a local g-orthonomal frame. Then

lf = [(e1 +∇df · e1) ∧ · · · ∧ (en +∇df · en)]⊗2,

and s = [e1 ∧ · · · ∧ en]⊗2. Recalling the conventions for the metric on the top wedge

product we have that

g(s, l′f ) = det2g(ei, ej +∇df · ej) = det2g(ei, ej) = 1,
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where we have used the orthogonality of TΛ and T ∗Λ in the penultimate step. In

general, we need to rescale l′f down to make it have unit length, as

g(l′f , l
′
f ) = det2(g(ei, ej) + g(∇df · ei,∇df · ej)) ≥ 1.

However, this scaling will preserve g(s, lf ) > 0. This completes the proof. □

It follows, in particular, that s ̸∈ −lf , and hence it is compatible.

3.6.2. Admissible coordinate systems in 1-jet space. Let c be a non-degenerate Reeb

chord joining Λf0 to Λf1 . Throughout this section, introduce canonical coordinates

z, x, y so that x(c) = 0. Since c is non-degenerate, we may pick our canonical coordi-

nate so that f(x) := f1(x)− f0(x) = a+ 1
2

∑
λix

2
i where each λi is ±1.

We propose a symplectic coordinate system via the formula:

(3.5) Φt(x, y) =

 f0(x) + tf(x)

x

df0(x) + tdf(x) + y.


We proceed to check that Φt satisfies the required properties of admissible coordinates

from §3.1. It is clear that Φt(0) is the time 1 constant speed parametrization of the

Reeb chord correponding to the critical point df(0) = 0. Next, we note that, by

construction Φ0(Rn × {0}) = Λf0 and Φ1(Rn × {0}) = Λf1 . This verifies properties

(i) and (iv) of the definition.

Next, we compute the time and space derivatives:

(3.6) Φ′
t =

 f(x)

0

df(x)

 and dΦt =

 df0(x) + tdf(x) 0

1 0

∇df0 + t∇df 1


It is clear that Φ′

t(0) and dΦt(0) are transverse whenever f(x) ̸= 0 (in particular,

this holds on a neighborhood around x = 0 since c corresponds to a positive critical

value). Thus property (ii) holds.

Next, observe that x 7→ Φt(x, 0) always parameterizes some Legendrian, and hence

the linearization of x 7→ Φt(x, 0) is tangent to ξ. Similarly, y 7→ Φt(0, y) always points

in the directions tangent to ∂y, which are tangent to ξ. Hence dΦt(0)(R2n) = ξΦt(0).

Recall that the symplectic form in canonical coordinates is given by
∑

dxi ∧ dyi.

After pulling back by Φt we conclude that:

dyi · dΦt(0) = dyi +
∑

j Aijdxj and dxi · dΦt(0) = dxi,
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where Aij is symmetric, and hence∑
dxi · dΦt(0) ∧ dyi · dΦt(0) =

∑
dxi ∧ dyi +

∑
i,j Aijdxi ∧ dxj =

∑
dxi ∧ dyi.

Thus property (iii) holds.

Since dΦt(0)(Rn) is the tangent space to the Legendrian Λf0+tf , we conclude that the

unit length section of det(ξ)⊗2 induced by φ = det dΦt(0)1, satisfies g(s, φ
2) > 0 for

all t ∈ [0, 1]. Thus the coordinate system (3.5) is an s-admissible chart, and can be

used to compute the linearized operator and Conley Zehnder indices.

3.6.2.1. Computing the linearized operator in this coordinate system. In order to de-

fine the linearized operator, recall that we use the projection Πt ∈ Hom(Φ∗TY,R2n)

satisfying Πt(x)(R(Φt(x))) = 0 and Πt(0)dΦt(0) = id. Using the canonical coordi-

nates z, x, y as a frame for TY , we can write Πt as a family of 2× 3 matrices:

Πt(x) =

[
0 1 0

0 −∇df0 − t∇df 1

]
.

Recalling the formula for Φ′
t(x), we see that the non-linear Reeb flow operator, for

η = x(t) + Jy(t), is

0 = η′(t) + Πt(η(t))Φ
′
t(η(t)) =

[
x′(t)

y′(t)

]
+

[
0

df(x)

]
.

Linearizing this operator at x = 0, y = 0, yields[
x′(t)

y′(t)

]
+

[
0 0

∇df(x) 0

]
,

and hence, recalling J = [ 0 −1
1 0 ], we have the asymptotic operator:

A = −J∂t −

[
−∇df(x) 0

0 0

]
=: −J∂t − S.

This decomposition is with respect to the splitting x1, . . . , xn, y1, . . . , yn.

Recall that we had f(x) = a + 1
2

∑
λix

2
i , so that ∇df(x) = diag(λ1, . . . , λn). Thus,

with respect to the splitting x1, y1, x2, y2, . . . , xn, yn we have

S(t) = diag([ −λ1 0
0 0 ], . . . , [

−λn 0
0 0 ]).

It follows from Example 2.12 that

(3.7) µCZ(A) = −number of positive eigenvalues = Morse index(f)− n.





Chapter 4

Dimensions of moduli spaces

The main goal of this chapter is to prove Theorem 1.3, namely, the formula for

the expected dimension of the space of parametrized holomorphic maps nearby a

given map u. At the end of the section we provide dimension formulas for counting

holomorphic curves with boundary on 1-jet sections in 1-jet space, and explain how

the formulas suggest one can define higher algebraic structures on Morse homology in

the framework of relative SFT. The relationship between Morse theory and relative

SFT is well-known in the literature; see [Ekh07], [EL17], [BEE12].

4.1. Outline of the strategy

The overarching strategy is to prove that the linearized operator Du naturally has the

structure of an asymptotically non-degenerate Cauchy-Riemann operator, as defined

in §6, and then apply the index formula stated in §6.1. In §4.2, we give a general

explanation of how to linearize the holomorphic curve equation. In order to apply the

index formula, we require u∗TW to have an asymptotically Hermitian structure, as

defined in §6.3.2, and this is explained in §4.2.1. There are some idiosyncracies involv-

ing exponential weights when working with holomorphic curves defined on punctured

domains which lead to contributions to the dimension formula; this is discussed in

§4.2.2. In §4.2.3, we describe the relationship between the results from §3 about Reeb

chords and the linearization of the holomorphic curve equation; this section contains

the technical computation of the linearized operator. Finally, in §5.4.2 and §4.3.1 we

complete the proofs of Theorems 1.3 and 1.5.

4.2. Digression on the linearization of the holomorphic curve equation

In general, let (W 2n, J) be an almost complex manifold and u : Σ → W be a J-

holomorphic map. The linearization of u is defined to be the Cauchy-Riemann oper-

atorDu on u
∗TW determined by the following local property. To set the stage, let U ⊂

Σ be an open region with holomorphic coordinates s, t, and Ψs,t : B(1) → W a family

of open embeddings defined along U , close to u in the sense that u(s, t) = Ψs,t(x(s, t))

can be solved for x(s, t). Then, clearly, dΨs,t(x) identifies R2n with TWΨs,t(x). Let

41
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Ps,t(x) denote the inverse map TWΨs,t(x) → R2n, and define the non-linear operator

associated to u = Ψ(x) by:

∂Ψ(η) = Ps,t(x+ η)[
∂

∂s
Ψs,t(x+ η) + J(Ψs,t(x+ η))

∂

∂t
Ψs,t(x+ η)].

Note that ∂Ψ maps sections of R2n to sections R2n, and hence can be linearized in an

obvious way. Let DΨ denote its linearization. We define:

(4.1) Du(w) = (ds− idt)⊗ dΨs,t(x) ·DΨ · Ps,t(x)w.

This is a Cauchy-Riemann operator. Remarkably, the section Du(w) of Λ
0,1 ⊗ u∗TW

is independent of the choices made, and hence these local coordinate descriptions glue

to define a global Cauchy-Riemann operator on u∗TW . Morally, the reason why this

construction is independent of the choices is the same reason why the linearization of

a section of a vector bundle is well-defined at the zeros of the section. We prove this

invariance in §4.4.

Remark 4.1. The independence of the linearized operator on the choice of Ψs,t gives

us a lot of flexibility in how we choose to linearize the holomorphic curve equation.

Two standard choices are:

(i) Ψs,t : B(1) → W is the Riemannian exponential map x 7→ Expu(s,t)(
∑
xiXi)

where Xi is some travelling frame. This has the property that Ψs,t(0) = u(s, t), which

is sometimes useful.

(ii) Ψs,t : B(1) → W satisfies Ψs,t = Ψ for a fixed embedding. This is a popular

choice. Oftentimes one requires that dΨs,t is complex linear at the origin.

Remark 4.2. The admissible coordinates Φt from §3.1 induce a family of Ψs,t which

can be used to linearize finite energy holomorphic curves near Reeb chords. Let

Ψs,t(σ, τ, x) = flow of Φt(x) by (σ + Ts)∂σ + τR for time 1,

where T is the action of the Reeb chord. The family Ψs,t defines a family of open

embeddings of a 2n+2 dimensional balls of the form R×(−ϵ, ϵ)×B(1). Note that we

can always extend Φt(x) for t < 0 and t > 1 by extending the time derivative Φ′
t(x)

(which is a priori defined on a submanifold with boundary in Y ).

Suppose that u(s, t) is defined on a strip [a, b]× [0, 1] and t 7→ pr◦u(s, t) is sufficiently

close to the Reeb chord Φt(0) in C
1. Then we can solve:

u(s, t) = Ψs,t(σ(s, t), τ(s, t), x(s, t)).

Moreover, as proved in §10, τ, x both converge to zero, and σ converges to a constant

σ0. The same sort of coordinate system also works for Reeb orbits. Indeed, the
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only meaningful difference is that τ need not converge to 0, but could converge to a

non-zero constant τ0.

Remark 4.3. For holomorphic curves which are not near Reeb chords/orbits, a useful

coordinate system is obtained by flowing by the Reeb vector field R, as follows. Let

φ parametrize a disk transverse to R in Y , and define

Ψ(σ, τ, x) = flow of φ(x) by σ ∂
∂σ

+ τR for time 1.

We restrict the range of τ around τ = 0 so that the flow is an embedding. Coordinates

of this type obviously cover Y .

Lemma 4.4. Let W = R × Y be the symplectization of a contact manifold with

an admissible complex structure (in the SFT sense). Suppose that u : Σ → W is

a holomorphic curve. Let Πξ : u∗TW → u∗ξ. Then Dξ = ΠξDu|u∗ξ is a Cauchy-

Riemann operator.

Proof. This is trivial. Let f be a real-valued function, and let η be a section of u∗ξ.

Then:

Du(fη) = df ⊗ η + df ◦ j ⊗ Jξη + fDu(η).

Now project both sides onto ξ, via Πξ, whereby we obtain

Dξ(fη) = df ⊗ η + df ◦ j ⊗ Jξη + fDξ(η),

as desired. □

4.2.1. Asymptotic trivializations of u∗TW . To apply the index formula in 6.1, we re-

quire that the bundle under consideration has an asymptotically Hermitian structure.

Briefly, such a structure is:

(i) a collection of strip/cylindrical ends biholomorphic to [0,∞) × S, S = [0, 1] or

R/Z, whose complement is a compact set, and

(ii) a unitary frame X1, . . . , Xn on the restriction of u∗TW to each end, spanning

u∗TΛ along the boundary.

Under a truncation operation, we can think of such frames as being germs of frames

at infinity. We say two frames be commensurate if they differ by a smooth transition

function θ : [0,∞) × S → U(n) (taking boundary values in O(n)) which satisfies∣∣∂ks θ∣∣ = o(1) for all k ≥ 1. There are obvious modifications for negative punctures. A

particular frame is called an asymptotic trivialization, and we define an asymptotically

Hermitian structure to be a commensurability class of asymptotic trivializations.

One can consider homotopy classes of commensurate asymptotic trivializations at a

fixed puncture, and by results in §3, we see that:
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(chord) the set of path components forms a Z × Z/2-torsor, classified by the (rel-

ative) winding number of (X1 ∧ · · · ∧ Xn)
⊗2 and the orientation X1 ∧ · · · ∧ Xn on

TΛ0.

(orbit) At an interior puncture the set of path components forms a Z-torsor, clas-
sified simply by the relative winding number of X1 ∧ · · · ∧Xn, see 3.1.3.

By appealing to convergence results in §10, we will show that every holomorphic

curve u asymptotic to a Reeb chord/orbit has a canonical asymptotically Hermitian

structure on u∗TW, u∗TΛ. Moreover, if one chooses a homotopy class of admissi-

ble symplectic coordinates for the limit Reeb chord/orbit, then u∗TW, u∗TΛ has a

canonical homotopy class of asymptotic trivializations.

The construction is fairly straightforward, and we describe it in the case of Reeb

chords, leaving the analogous orbit case to the reader. Pick a constant speed unitary

coordinate chart Φ around c in the desired homotopy class, and use Remark 4.2 to

obtain the coordinate system Ψs,t(σ, τ, x) = FΨt(x) around R× c inside R× Y .

By Theorem 10.1, u(s, t) can be written as Ψs,t(σ, τ, x) where τ and σ− σ0 and their

derivatives decay exponentially with rate δ(c). Then

dΨs,t(x) =

[
1 (1− Πξ)dFdΦt(x)

0 ΠξdFdΦt(x)

]
: C⊕ R2n → C⊕ u∗ξ ≃ u∗TW

converges exponentially to a unitary isomorphism (namely diag(1, dΦt(0))). There is

a unique commensurability class, resp., homotopy class, of asymptotic trivializations

which is commensurate, resp., homotopic, to the frame induced by the above isomor-

phism. More precisely, if X1, . . . , Xn is a unitary frame of (u∗ξ, u∗TΛ) and e1, . . . , en

is the standard Rn frame, and

∥ΠξdFdΦt(x)ei −Xi∥Ck(s) = o(e−δ|s|) as |s| → ∞,

then we say that Xi is asymptotically Φ-standard. The canonical commensurability

class, resp., homotopy class, is represented by the frame X1, . . . , Xn.

Proposition 4.5. Asymptotically Φ-standard frames always exist.

Proof. This is slightly non-trivial, since ΠξdFdΦt(x)ei may not be a unitary frame.

By construction, we know that ΠξdFdΦt(x)ei lies in u∗TΛ when t = 0, 1, so that

is good. By applying the Gram-Schmidt process to ΠξdFdΦt(x)ei we can make it

orthogonal for the Hermitian metric. Moreover, this process does not leave u∗TΛ

along the boundary. The resulting frame is called Xi (and X1, JξX1, . . . forms a basis

at each point). Simple estimates of the change induced by Gram-Schmidt process
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imply that the resulting frame is asymptotically standard, and the details are left as

exercise for the reader. See the proof of Lemma 4.7 for further discussion. □

4.2.2. Digression on exponential weights. See [Wen10, §2], [BM04, Proposition 4],

for discussion in the case of interior punctures. See [BC07, §4.4], [CEJ10] for similar

arguments.

Naively, the moduli space of holomorphic maps defined on Σ valued some almost

complex manifold W (with boundary conditions on a totally real submanifold), is

analyzed by considering the moduli space as embedded in some Sobolev manifold of

all maps W 1,p(Σ,W ). One can do this in the case W = R × Y , with totally real

submanifold R× Λ for Λ a Legendrian.

There are other Sobolev manifolds we could consider. For instance, Theorem 10.1

implies that exponentially weighted Sobolev spaces W 1,p,δ will also contain any rele-

vant holomorphic curves, provided δ is sufficiently small (i.e., smaller than any δ(c)

appearing in the curve under consideration).1

This exponential decay result is fortuitous, because if we linearize the holomorphic

curve equation in the unweighted space W 1,p we obtain a non-Fredholm linearization.

We digress for a moment to explain this phenomenon.

As stated in Equation (4.3) below, the linearization is a Cauchy-Riemann operator

on u∗TW , and the linearization is asymptotically diagonal for the splitting u∗TW =

C ⊕ u∗ξ, where the C factor is spanned by ∂σ and R. In the strip-like ends, the

linearization on the C-factor takes the form:

DC(η) = ∂sη + J∂tη,

This means that the asymptotics are degenerate. It can be shown that this implies

D is not Fredholm. Roughly, the argument is that we can construct a sequence of

sections ηn taking values the C factor with ∥ηn∥W 1,p = 1, but with D(ηn) tending to 0

in Lp. We should construct ηn so that it has its Lp norm spread out over a large region,

and thus has a small derivative, and so that its support lies in the region |s| > sn

with sn → ∞. Lemma 4.7 implies that this construction is possible. If D were

Fredholm, then standard linear compactness results would imply that ηn converges to

a non-zero solution of ∂sη∞ + J∂tη∞ = 0 lying in W 1,p. Briefly, the argument is that

D+Π : W 1,p → Lp ⊕ V is a closed linear embedding where Π is some map W 1,p → V

onto a finite dimensional vector space. Thus, if ηn is bounded, then a subsequence of

the projection Πηn converges. Since the other summand, D : W 1,p → Lp, is a closed

1Technically we lied in this sentence, as the different curves can have different constants σ0, τ0, but
let us ignore this issue for the moment.
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map and D(ηn) converges to 0, we conclude that a subsequence of ηn converges in

η∞ ∈ W 1,p (by applying the closed linear embedding property). However, there are no

non-zero solutions of ∂sη∞ + J∂tη∞ = 0 in W 1,p(R× [0, 1];C,R). This contradiction
proves that D cannot be Fredholm.

However, if we instead use theW 1,p,δ space, the linearization (via conjugation with the

Banach isomorphism η 7→ e−δsη), is described by the map η ∈ W 1,p 7→ eδsD(e−δsη),

which is easy to compute as:

Dδ(η) = ∂sη + J∂tη + S(s, t)η − δη.

This was assuming we were working at a positive puncture. If we were instead working

at a negative puncture, then we would have:

Dδ(η) = ∂sη + J∂tη + S(s, t)η + δη

These are Fredholm operators.

One can define a global linear isomorphism which conjugates (D,W 1,p,δ, Lp,δ) to

(Dδ,W
1,p, Lp) where Dδ has its asymptotics given by the above formulas (one simply

needs to multiply by an appropriate R-valued function).

Assuming δ is sufficiently small compared to the spectral properties of A, we conclude

that:

Index(Dδ) = Index(Dδ|C) + Index(Dξ).

The index formula from §6.1 can be immediately applied to (Dδ|C) (i.e., it does not
depend on the topology of ξ). We compute:

Index(Dδ|C) = X(Σ,Γ±) +
∑
Γ+

µCZ(−J∂tη + δη)−
∑
Γ−

µCZ(−J∂t − δη)

= X(Σ,Γ±)− |Γ+| −
∣∣Γint

−
∣∣

where we have used the computation of the Conley-Zehnder indices relevant to expo-

nential weights from §2.7. We therefore conclude that:

Index(Dδ) = X(Σ,Γ±)− |Γ+| −
∣∣Γint

−
∣∣+ Index(Dξ),

where Dξ is the restriction of the linearization to u∗ξ.

Unfortunately, as alluded to above, there is the problem that not all nearby holomor-

phic curves will lie in theW 1,p,δ charts centered on a fixed curve u, because two u1, u0

can have σ ◦ u1 − σ ◦ u0 converging to a non-zero constant.

Remark 4.6. At an interior puncture, we can also have τ ◦u1−τ ◦u0 converging to a

non-zero constant, where τ is an R/Z-valued coordinate parametrizing the asymptotic

Reeb orbit. Typically in SFT one fixes a base-point on the underlying simple Reeb
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orbit and one requires that asymptotic markers converge to this base-point. See

[Wen20], [Par19] for more discussion. This implies that any curve nearby u in the

moduli space will be forced to have τ ◦ u1 − τ ◦ u0 convergent to 0.

To fix the issue with the σ and τ coordinate, we define:

W 1,p,δ,st ⊂ W 1,p
loc

to be the image of (u, ρ) ∈ W 1,p,δ⊕RΓ⊕(iR)Γint 7→ u+ρ ∈ W 1,p
loc where RΓ and (iR)Γint

are finite-dimensional families of sections, so that the section 1 corresponding to ζ ∈ Γ

is supported in the strip-like end corresponding to ζ and converges exponentially, with

rate at least δ, to 1 in the trivial C factor (i.e., ∂σ). For interior punctures, we also

require that the section i corresponding to ζ converges to i in the trivial C factor

(i.e., R) with rate δ.

The set W 1,p,δ,st is independent of the precise choice of finite-dimensional family, and

the isomorphisms withW 1,p,δ⊕RΓ⊕(iR)Γint
give a well-defined Banach space topology.

The linearized operator Dδ,st : W 1,p,δ,st → L1,p,δ is well-defined. Moreover, the Banach

manifold locally modeled on W 1,p,δ,st is large enough to contain all the holomorphic

maps Σ → R× Y under consideration. We have:

(4.2) Index(Dδ,st) = X(Σ,Γ±) + |∂Γ−|+
∣∣Γint

∣∣+ Index(Dξ).

This quantity should be thought of as the expected dimension for the space of

parametrized holomorphic maps nearby u. If one wishes to restrict curve via as-

ymptotic markers, in the SFT sense, one should subtract
∣∣Γint

∣∣ from this formula.

4.2.3. The Cauchy-Riemann operator Dξ. The index formula for Dξ depends on cer-

tain topological quantities associated to ξ, Λ, and the asymptotic Reeb chords and

orbits.

Suppose that u is a holomorphic map with boundary on R×Λ for a Legendrian Λ and

assume u is asymptotic to the set R of Reeb chords of Λ at its boundary punctures,

and the set O of Reeb orbits at its interior punctures.

Pick an admissible section s of det(ξ)⊗2 as in §1.3.3. For each chord or orbit, pick

unitary charts Φt compatible with s. Let also assume that the charts traverse each

Reeb chord with constant speed in time 1.

The exponential decay estimate from Theorem 10.1 implies that every holomorphic

strip with boundary on Λ0,Λ1 will eventually enter the domain of the chosen coor-

dinate charts, as explained in Remark 4.2. We will now compute the linearization
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of the holomorphic curve equation in these coordinates. The computation is a bit

technical.

Lemma 4.7. Let Φt be an s-admissible unitary coordinate chart centered at the

non-degenerate Reeb chord (resp., orbit) c, so that Φt(0) traverses c with constant

speed in time 1. Suppose that u is a holomorphic strip (resp., cylinder) asymptotic

to c, and let X1, . . . , Xn be an asymptotically Φ-standard unitary frame of u∗ξ, as

defined in §4.2.1. Let X0 be the standard frame of the C-summand of u∗TW , namely

X0 = ∂σ ◦ u and JX0 = R ◦ u. Let As = −J0∂t − S(t) be the asymptotic operator for

c, as computed by Φ following §3.3. Then for ηX = ηCX0 +
∑

k ηξ,kXk, we have:

(4.3) Du(ηX) =
[
X ′

0 X ′
1, . . . , X

′
n

] [ ∂s + i∂t ∆1

∆2 ∂s + J0∂t + S(t) + ∆3

][
ηC

ηξ

]
,

where ∆i are zeroth order terms which converge to 0 as |s| → ∞. Here we use the

notation X ′
k = (ds− idt)⊗Xk to denote the induced frame for Λ0,1 ⊗ u∗TW .

Proof. We use the coordinate system Ψs,t(σ, τ, x) introduced in Remark 4.2. If we

let Fs(σ, τ) be the time 1 flow by (σ+ Ts)∂σ + τR, then Ψs,t(σ, τ, x) = Fs(σ, τ)Φt(x).

Throughout the argument, we will often drop subscripts, etc, from the notation (in

order to fit the formulas), i.e., we will write F instead of Fs(σ, τ), etc. We make one

immediate reduction; by suitably changing our coordinates by a rotation, we may

suppose that τ converges to 0 (i.e., we can set τ0 = 0).

As explained in Remark 4.2, we may suppose that u(s, t) = Ψs,t(σ(s, t), τ(s, t), x(s, t)).

Then we compute:

∂sΨs,t(σ, τ, x) = dFdΦt(x)
∂x

∂s
+ ∂σ ◦Ψ(

∂σ

∂s
+ T ) +R ◦Ψ∂τ

∂s
.

Next we compute the other term appearing in the non-linear equation:

J∂tΨs,t(σ, τ, x) = JdFdΦt(x)
∂x

∂t
+R ◦Ψ∂σ

∂t
− ∂σ ◦Ψ(

∂τ

∂t
+ T ) + J(dFΦ′

t(x)− TR).

Adding these together gives a concise expression for the non-linear operator:

∂sΨ+J∂tΨ = dFdΦ
∂x

∂s
+JdFdΦ

∂x

∂t
+∂σ[

∂σ

∂s
− ∂τ

∂t
]+R[

∂τ

∂s
+
∂σ

∂t
]+J(dFΦ′

t(x)−TR).

Recall that, in order to linearize the PDE as prescribed by §4.2, we need to apply

Ps,t = dΨ−1
s,t to both sides and then linearize the resulting operator on C⊕ R2n.

It is clear that Ps,t : u
∗TW → C ⊕ R2n maps ∂σ to 1, R to i, and maps u∗TW onto

R2n via Πt(x)dF
−1, where Πt(x)dΦt(x) = id and Πt(x)R = Πt∂σ = 0, as prescribed



4.2. DIGRESSION ON THE LINEARIZATION OF THE HOLOMORPHIC CURVE EQUATION 49

by §3.3 and §3.1.3. We conclude that, for z = σ + iτ ,

P(∂sΨ+ J∂tΨ) =

[
∂sz + i∂tz

∂sx+ J0∂tx

]
+ (

[
0 0

0 J0

]
− PJdFdΦ)

∂x

∂t
+ PJ(dFΦ′

t(x)− TR).

The first term is linear, indeed, it is the standard Cauchy-Riemann operator on sec-

tions of C ⊕ R2n. We will now proceed to estimate the other terms. Let w = (z, x),

and let E(w) = A · w · w + B · w · dw + C · dw · dw be an error term, where A,B,C

are smooth tensor valued functions of w and dw. We also suppose that E doesn’t

depend σ0 or τ0. We treat the E(w) notation similarly to the “little o” notation, i.e.,

it acts as a sort of garbage collector term.

Observe that:

(

[
0 0

0 J0

]
− PJdFdΦ)

∂x

∂t
= E(w),

since the quantity in front of ∂x/∂t vanishes when x = τ = 0 (since dF acts trivially

and dΦt(0) is supposed to be unitary). Moreover, observe that

(PJ − J0P)(dFΦ
′
t(x)− TR) = E(w),

this is because PJ − J0P vanishes when x = τ = 0. Thus we conclude that

P(∂sΨ+ J∂tΨ) =

[
∂sz + i∂tz

∂sx+ J0∂tx

]
+ J0P(dFΦ

′
t(x)− TR) + E(w).

Now we compute:

J0P(dFΦ
′
t(x)− TR) =

[
−α(Φ′

t(x)− TR)

J0Πt(x)Φ
′
t(x)

]
.

As proved in §3.3, J0Πt(x)Φ
′
t(x) = S(t)x+E(w) for the family of symmetric matrices

S(t) appearing in Definition 3.7. Lemma 3.10 implies that −α(Φ′
t(x)− TR) = E(w)

(as it vanishes to second order in x). Thus

P(∂sΨ+ J∂tΨ) =

[
∂s + i∂t 0

0 ∂s + J0∂t + S(t)

][
z

x

]
+ E(w).

The first term is linear. Thus, when we linearize, we obtain

DΨ =

[
∂s + i∂t 0

0 ∂s + J0∂t + S(t)

]
+DE.

The crucial observation is that DE is a first order differential operator whose coeffi-

cients converge to 0 as s → ∞. This is because E(w) is quadratic in w and dw, and

we know w = (z, x) and its derivatives converge to 0 (recall that σ does not influence

E, so the potentially non-zero limit σ → σ0 can be ignored).
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The invariant linearized operator associated to u = Ψ(w) is the conjugation of DΨ

via P and dΨ:

Du = (ds− idt)⊗ dΨ ·DΨ · P,

Let us focus on the dΨ·DΨ ·P part. The key idea needed to manipulate this formula is

to introduce the asymptotically standard frames on ξ, as defined at the end of §4.2.1.

Let e1, . . . , en be the standard unitary frame for R2n (whose real span is Rn), and let

e0 be the standard frame for C (whose real span is R), so that e0, e1, . . . , en forms a

unitary frame for (C⊕ R2n,R⊕ Rn).

Then dΨ(w)(e0) = X0, dΨ(w)(ie0) = JX0, and, for k ≥ 1,

dΨ(w)(ek) = dFdΦt(x)ek.

Now let X1, . . . , Xn be the asymptotically standard frame for Ψ∗ξ obtained by apply-

ing Gram-Schmidt to ΠξdFdΦt(x)ek, k = 1, . . . , n.

It is clear that Xk = ΠξdFdΦt(0)ek = dΦt(0)ek when x = τ = 0, because dΦt(0)ek is

unitary (so Gram-Schmidt does nothing), and dF and Πξ act identically. Thus

(4.4) P(Xk − ΠξdFdΦt(x)ek) = G(w) · w,

treating G(w) · w as an error term where G(w) is a smooth tensor valued function.

Moreover, observe that

(4.5) P(ΠξdFdΦt(x)ek)− P(dFdΦt(x)ek) = P(ΠξdFdΦt(x)ek)− ek = G(w) · w,

because the terms on the left are equal when x = 0, and where we use that PdFdΦt(x)

acts identically on the R2n factor.

Let ηX = ηCX0 +
∑n

k=1 ηξ,kXk, so (ηC, ηξ) is C⊕ R2n valued. We have

Du(ηX) = dΨ ·DΨ(ηkPXk) = dΨ ·DΨ(ηkek) + dΨ ·DΨ(η ·G(w) · w).

Let L(η) = DΨ(η · G(w) · w), and observe that L is a first order operator whose

coefficients decay to 0 as |s| → ∞. This is because w and its derivatives decay to

zero.

Next, observe that:

DΨ(ηkek) =

[
∂s + i∂t 0

0 ∂s + J0∂t + S(t)

][
ηC

ηξ

]
+DE(ηkek).
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Clearly η 7→ DE(ηkek) is another first order operator with the same properties as L,

hence we can combine terms and conclude that:

Du(ηX) = dΨ ·

[
∂s + i∂t 0

0 ∂s + J0∂t + S(t)

][
ηC

ηξ

]
+ dΨ · L(η).

We are almost done. The above equation implies that:

Du(ηX) = (∂sηC + i∂tηC)X0 + (∂sηξ + J0∂tηξ + S(t)ηξ)k · dΨ(ek) + dΨ · L(η).

The next step is to replace dΨ(ek) by the unitary frame Xk of u∗ξ. Recall that we

had dΨ(ek) = dFdΦt(x)ek, and so Xk − dΨ(ek) is of class dΨ ·G(w) ·w (by applying

dΨ to the estimates in (4.4) and (4.5)). Thus we can update L to conclude that:

Du(ηX) = (∂sηC + i∂tηC)X0 + (∂sηξ + J0∂tηξ + S(t)ηξ)k ·Xk + dΨ · L(η).

Since L(η) is a first order operator R2n+2 → R2n+2 whose smooth coefficients decay

to zero, and dΨ is approximately unitary, we conclude that:

Du(ηX) = (∂sηC + i∂tηC + LC(η))X0 + (∂sηξ + J0∂tηξ + S(t)ηξ + Lξ(η))kXk,

for first order operators LC, Lξ whose smooth coefficients decay to zero as s→ ∞.

Now the crucical observation is that Du(ηX) and

Dapprox
u (ηX) = (∂sηC + i∂tηC)X0 + (∂sηξ + J0∂tηξ + S(t)ηξ)kXk,

are both Cauchy-Riemann operators (i.e., have the same symbol). See §4.4 for the

proof that Du is a Cauchy-Riemann operator.

Thus their difference, which is simply L(η) = LC(η)X0 + Lξ(η)kXk, must be a zeroth

order operator. Thus we conclude the desired result: for this frame, we have

Du(ηX) =
[
X ′

0 X ′
1, . . . , X

′
n

] [ ∂s + i∂t +∆0 ∆1

∆2 ∂s + J0∂t + S(t) + ∆3

][
ηC

ηξ

]
,

where ∆i are zeroth order terms which converge to 0 as s→ ∞.

For the final step, we will show that ∆0 = 0, which will complete the proof. To do

so, consider the coordinate system:

Ψs,t(σ, τ, x) = Fσ,τ (φ(x))

introduced in Remark 4.3. Suppose that u = Ψs,t(σ, τ, x), as above. In this simpler

coordinate system, it is easy to compute the non-linear operator as:

P(∂sΨ+ J∂tΨ) =

[
∂sz + i∂tz + α(dφ(x))∂tx

∂sx+ J ′(x, τ)∂tx

]
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for suitable complex structure J ′(x, τ) (here z = σ + iτ again). This coordinate

system has the property that P and dΨ act identically on the C summand, and hence

we conclude by linearizing the above formula with respect to z that ∆1 = 0. This

completes the proof. □

As a corollary of this result, we conclude the Cauchy-Riemann operator Dξ takes

the form ∂s − As + ∆, where As is in the homotopy class of asymptotic operators

computed using the homotopy class of chart determined by s, and ∆(s, t) → 0 as

|s| → ∞. Applying the index formula §6.1, we obtain:

(4.6) Index(Dξ) = nX(Σ,Γ±) +Ms · [u] +
∑
ζ∈Γ+

µCZ(A
s
ζ)−

∑
ζ∈Γ−

µCZ(A
s
ζ).

Here we use the fact that the signed count of zeros of s ◦ u is equal to the Maslov

number of the pair (u∗ξ, u∗TΛ) with the asymptotic trivializations induced by s.

Clearly the signed count of zeros of s ◦ u is also the signed count of intersections of u

with Ms.

4.3. The dimension of the space of parametrized holomorphic curves

Combining (4.6) with (4.2), we obtain the following dimension formula for the space

of parametrized holomorphic curves nearby u. Namely, if d = Index(Dδ,st), then

d = (n+ 1)X(Σ,Γ±) + |∂Γ−|+
∣∣Γint

∣∣+Ms · [u] +
∑
ζ∈Γ+

µCZ(A
s
ζ)−

∑
ζ∈Γ−

µCZ(A
s
ζ).

This index is independent of the choice of s, although the individual terms involving

s do depend on it. If one wishes to fix asymptotic markers at each interior puncture,

one should subtract the
∣∣Γint

∣∣ term.

We can also rewrite X(Σ,Γ±) = X(Σ̄)−
∣∣Γint

∣∣− |∂Γ−| , and one obtains

d = (n+ 1)X(Σ̄)− n |∂Γ−| − n
∣∣Γint

∣∣+Ms · [u] +
∑
ζ∈Γ+

µCZ(A
s
ζ)−

∑
ζ∈Γ−

µCZ(A
s
ζ).

This completes the proof of Theorem 1.3.

Remark 4.8. The formula from [BM04, Proposition 4] computes a similar dimen-

sion of the space of (parametrized) curves without boundary, with unconstrained

asymptotic markers. The formula they give is:

d = (n+ 1)X(Σ̄) + 2cs1(u) +
∑
Γ+

(µCZ(A
s
ζ)− n)−

∑
Γ−

(µCZ(A
s
ζ) + n).

which agrees with ours, since 2cs1(u) =Ms · [u] when there is no Legendrian.
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4.3.1. Examples of disks in 1-jet space. In 1-jet space, we take the globally non-

vanishing s described in §3.6.1. Thus the Maslov class is zero. Moreover, every Reeb

chord Λ0 → Λ1 corresponds to a critical point of the local function difference f1 − f0,

and there are no Reeb orbits. Assuming the chord is non-degenerate, the Conley-

Zehnder index of this Reeb chord is minus the number of positive eigenvalues of the

Hessian, i.e., µCZ = µMor − n. This was proved in §3.6.2.1.

Let Σ be a disk with boundary punctures, so X(Σ̄) = 1. Appealing to the formula for

the relative Euler characteristic from Lemma 6.6 we can simplify the general formula

from §5.4.2 to obtain:

Index(Dδ,st) = n(1− |Γ+|) + 1 +
∑
ζ∈Γ+

µMor(ζ)−
∑
ζ∈Γ−

µMor(ζ).

Here are a few special cases:

(i) When |Γ+| = |Γ−| = 1, then the dimension is 1+µMor(ζ+)−µMor(ζ−). This is to

be expected, as there is an R2 action on the space of parametrized strips (one R action

is by translation in the codomain and the other R action is by reparametrization in

the domain). Thus, in order to get rigid counts, we should have

d = 1 + µMor(ζ+)− µMor(ζ−) = 2,

which is the usual “index difference 1” condition between the positive and negative

ends.

(ii) When |Γ+| = 1 and |Γ−| = 2, then the dimension is

d = 1 + µMor(ζ+)− µMor(ζ
1
−)− µMor(ζ

2
−).

In this case there is no reparametrization action (as a thrice punctured disk is stable),

but there is still the R action by translation on the codomain. Thus in order to get

rigid counts we should have d = 1.

(iii) When |Γ+| = 2 and |Γ−| = 1, then the dimension is

d = 1− n+ µMor(ζ
1
+) + µMor(ζ

2
+)− µMor(ζ−).

Once again, the condition to get rigid counts is d = 1 (there is no reparametrization

action).

(iv) For |Γ+|+ |Γ−| > 3, then the space of punctured disks has non-trivial moduli.

There are two approaches one can take to deal with moduli; either fix the domain and

obtain rigid counts for that fixed domain (and perhaps analyze how these counts vary

with the domain), or allow the domain to vary in its moduli space and obtain rigid

counts in the parametric sense. Since the moduli space of punctured disks varies in a
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|Γ+|+ |Γ−| − 3 dimensional moduli space, the expected dimension of the parametric

moduli space is:

d = n(1− |Γ+|) + |Γ−|+ |Γ+| − 2 +
∑
ζ∈Γ+

µMor(ζ)−
∑
ζ∈Γ−

µMor(ζ).

To extract rigid counts we require d = 1, again because of the translation action on

the domain. For instance, when Γ+ = 1 and Γ− = k, we have

d = k − 1 + µMor(ζ
+)−

∑
µMor(ζ

−
i ).

The rigidity condition is then

2− k = µMor(ζ
+)−

∑
µMor(ζ

−
i ).

Remark 4.9. The rigid counts when µMor(ζ
+)−

∑
µMor(ζ

−
i ) = 2−k, when counting

disks with 1 positive puncture, is an indication that we can put a differential of the

form d = d1 + d2 + . . . on a free tensor algebra generated by critical points of Morse

functions, with grading shifted down by 1 (i.e., |c| = µMor(c) − 1). Some care needs

to be taken when picking exactly which Morse functions should appear. See [EL17]

for results in this vein.

4.4. Invariance of the linearized operator

In this section we prove that the linearized operator associated to a holomorphic curve

u : Σ → (W,J) is independent of the choices.

Recall the approach introduced in §4.2: over an open set U ⊂ Σ with holomorphic

coordinates s+it, we pick a family of open embeddings Ψs,t : B(1) → W , close enough

to u that the equation u(s, t) = Ψs,t(x(s, t)) can be solved for x : U → B(1). Also

recall that dΨs,t(x) denotes the space-derivative, i.e., the derivative of h 7→ Ψs,t(x+h),

and Ps,t(x) is the inverse to dΨs,t(x).

We define the non-linear operator associated to Ψ and u via the formula:

(4.7) ∂Ψ(η) = Ps,t(x+ η)[
∂

∂s
Ψs,t(x+ η) + J(Ψs,t(x+ η))

∂

∂t
Ψs,t(x+ η)].

This is an operator mapping sections of R2n to sections of R2n, and, crucially, ∂Ψ(0) =

0, hence ∂Ψ be linearized by the formula DΨ(η) = limϵ→0 ϵ
−1∂Ψ(ϵη).

Recall that we define the linearized operator associated to u by the formula:

(4.8) Du(w) = (ds− idt)⊗ [dΨs,t(x) ·DΨ(Ps,t(x)w)].

Our goal in this appendix is to explain why (4.8) is independent of the choice of Ψ

and coordinate s+ it.
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First let us remove the dependence on Ψ. Let Ψ0
s,t and Ψ1

s,t be two coordinate systems.

Let u = Ψ1(x1) = Ψ0(x0). For η1 sufficiently small, there is a unique η0 = Fs,t(η
1) so

that:

(4.9) Ψ1
s,t(x

1(s, t) + η1(s, t)) = Ψ0
s,t(x

0(s, t) + η0(s, t)).

Indeed, we have:

(4.10) Fs,t(η
1) = (Ψ0

s,t)
−1(Ψ1

s,t(x
1(s, t) + η1))− x0(s, t).

It is apparent from (4.7) and (4.9) that

dΨ0
s,t(x

0 + η0)∂Ψ0(η0) = dΨ1
s,t(x

1 + η1)∂Ψ1(η1).

In particular, we have

P1
s,t(x

1 + η1)dΨ0
s,t(x

0 + Fs,t(η
1))∂Ψ0(Fs,t(η

1)) = ∂Ψ1(η1).

The strategy now is to linearize both sides at η1 = 0. The linearization is rela-

tively easy to compute because ∂Ψ0(0) = ∂Ψ1(0) = 0. Because of this, taking the

linearization yields:

P1
s,t(x

1)dΨ0
s,t(x

0) lim
ϵ→0

∂Ψ0(Fs,t(ϵη
1))

ϵ
= lim

ϵ→0

∂Ψ1(ϵη1)

ϵ
= DΨ1(η1).

By the chain-rule we have

lim
ϵ→0

∂Ψ0(Fs,t(ϵη
1))

ϵ
= DΨ0(lim

ϵ→0

Fs,t(ϵη
1)

ϵ
) = DΨ0(dFs,t(0)η

1).

It is clear from the formula (4.10) that the space derivative dFs,t can be computed as

dFs,t(0) = P0
s,t(x

0)dΨ1
s,t(x

1).

We obtain:

P1
s,t(x

1)dΨ0
s,t(x

0)DΨ0(P0
s,t(x

0)dΨ1
s,t(x

1)η1) = DΨ1(η1).

Given a section w of u∗TW , set η1 = P1
s,t(x

1)w in the above equation (and rearrange

slightly) to conclude:

dΨ0
s,t(x

0)DΨ0(P0
s,t(x

0)w) = dΨ1
s,t(x

1)DΨ1(P1
s,t(x

1)w)

Comparing with (4.8), we see that we have proved the desired invariance of Dw on

the choice of Ψ.

Next we remove the dependence on the holomorphic coordinate s + it. We may as

well assume that we use Ψ which is independent of the point on U .
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Observe that for any smooth map φ : U → W we have

(ds− idt)⊗ (
∂φ

∂s
+ J

∂φ

∂t
) = dφ+ J · dφ · j.

Appling this with φ(s, t) = Ψ(x(s, t) + η(s, t)), and comparing with (4.8), we have

(ds− idt)⊗ ∂Ψ(η) = P(x+ η)[dφ+ J · dφ · j].

The right hand side is independent of the coordinates used! Linearizing this at η = 0

proves that the combination (ds− idt)⊗DΨ(η) is also independent of s+ it. Setting

η = P(x)w and composing with dΨ(x) yields the desired result.

To complete the section, we record the fact that Du is actually a Cauchy-Riemann

operator on (u∗TW, J(u)).

Proposition 4.10. Let f : Σ → R be a smooth function. Then

Du(fw) = (df + i · df · j)⊗ w + fDu(w),

i.e., Du is a Cauchy-Riemann operator (u∗TW, J(u)) → Λ0,1 ⊗ u∗TW .

Proof. Left as exercise for the reader. □

4.4.1. The linearized operator for non-holomorphic maps. Suppose that u : Σ → W is

a non-holomorphic map. It is easy to see that the linearized operator is depends of the

choice of Ψ and coordinate s+ it in a non-trivial way. One can define non-canonical

ways to extract a linearized operator (e.g., by using Riemannian exponential maps).

In this section we explain how the quantity:

d(u) = (n+ 1)X(Σ)− n |∂Γ−| − n
∣∣Γint

∣∣+Ms · [u] +
∑
ζ∈Γ+

µCZ(A
s
ζ)−

∑
ζ∈Γ−

µCZ(A
s
ζ),

is independent of s, assuming that u is holomorphic in a neighborhood of its punctures.

We also assume that u has finite Hofer energy. These assumptions imply that u has

well-defined asymptotics chords and orbits (which appear in d(u)).

By linearizing the holomorphic curve equation near the punctures, we obtain a Cauchy-

Riemann operator D defined only on a neighborhood of the punctures. Perform the

same modifications described above to obtain the operator Dδ,st with non-degenerate

asymptotics. Extend Dδ,st to all of Σ arbitrarily. This is always possible as the space

of Cauchy-Riemann operators is affine. Then the Fredholm index of Dδ,st is d(u).

The construction of Dδ,st is indepedent of s, and this proves the desired invariance.



Chapter 5

Legendrian Knots in R3

Using the framework established in the previous sections, we define the Maslov class

and Conley-Zehnder indices for a Legendrian knot in R3. For connected Legendrians

with rotation number zero, we define canonical integer gradings for Reeb chords agrees

with the one [Etn04, §4.1]. We give a simple algorithm for computing the gradings

in terms of chord crossing rules for when the Maslov class crosses a Reeb chord.

0 0

0 0

0

−1

−1

−1

−1

Figure 1. One of the Chekanov-Eliashberg knots. The Maslov class is
a collection of linking circles. The Conley-Zehnder indices are computed
using the s which arises from surgery at the vertical tangencies (as
explained in this chapter).

5.1. Review of Legendrian knots

Let L be a Legendrian knot in R3 with the standard contact structure dz − ydx.

Via a Legendrian isotopy, let us suppose that y > 0, and z|L is a Morse function.

Since y > 0, the critical points of z are the vertical tangencies Lagrangian projection

(x, y, z) → (x, y) of the knot.

Recall that we define the Maslov class of the Legendrian knot to be the zero locus of

any section s of detC(ξ)
⊗2 which points in the direction of TL ⊗ TL along L. More

57
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precisely, we should require that s never lies in the negative ray −TL⊗2 ≃ (−∞, 0],

using the canonical orientation of TL⊗2.

In this non-compact case, we should impose an asymptotic condition on s: we require

that s = ∂x⊗∂x at infinity, using the identification of ξ with R2 via the x, y projection.

It is straightforward to see that the relative winding number between ∂x and TL is

equal to zero if and only if we can choose s to be globally non-zero. Such Legendrians

are said to have zero rotation number.

As we will explain momentarily, for certain choice of s (obtained from ∂x ⊗ ∂x by a

linear surgery near the vertical tangencies), the Maslov class will be represented by a

collection of linking circles around the knot, one located near each vertical tangency.

We also recall s determines Conley-Zehnder indices for each Reeb chord, assuming

that s ̸= 0 on the Reeb chords.

5.1.1. Morse type crossings. A crossing of the Lagrangian projection is of Morse type

if the upper and lower strands are 1-jets and the local function difference between

the upper and lower strand is f(x) = a + λx2 + x3g(x) where λ ̸= 0, and a > 0 is

the action. Here we use a translated coordinate system where the crossing occurs at

x = 0.

5.1.1.1. Quadratic local models. By deforming the local generating functions on a

compact subset of the endpoints of the Reeb chord, we may assume that the lower

function has a constant (positive) derivative y0, i.e., equals c0 + y0x, and the upper

function equals c0 + a+ y0x+ λx2, on small enough open sets.

To do this, one observes that the lower function needs to be strictly increasing (since

the Legendrian is in the region y > 0), and hence we can deform it relative its end-

points to make it have constant positive derivative. We simultaneously perform this

compactly supported deformation to the upper function. Thus, the x coordinate of

the Reeb chord between the lower and upper strands is fixed during the deformation.

By picking the open set on which we do the deformation sufficiently small, we can

ensure the y coordinate varies an arbitrarily small amount. Thus the deformation

introduces no new Reeb chords.
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y0

λ < 0 λ > 0

Figure 2. Local models for a crossing in the x, y plane. The number λ
represents the second derivative of the local function difference, and is
also the slope of the upper strand. We draw the orientation induced by
the identification with 1-jets. We do not require this orientation extends
to all of L (indeed, none of our constructions require an orientation of
the knot).

5.1.2. Conley-Zehnder indices. Let c denote a Morse type crossing. Recall from 3.2.1

that a section s which is non-vanishing and satisfies s ̸∈ −TL⊗2 at both endpoints

determines a Conley-Zehnder index. If s is homotopic to ∂x ⊗ ∂x along c relative the

endpoints,1 we have the following formula:

µCZ(c, s) =

{
−1 if λ > 0

0 if λ < 0

This follows immediately from §3.6.2.1. The formula tells us how to compute the

Conley-Zehnder indices when we use s = s0 = ∂x ⊗ ∂x. However, in general, such s

will not be compatible with the global structure of L.

If s is compatible with L and is non-vanishing on the Reeb chords, then s induces a

relative Maslov class Ms = s−1(0) which is disjoint from L and all the Reeb chords.

If we perturb s in such a way that Ms crosses a Reeb chord, then the Conley-Zehnder

index of that Reeb chord, as determined by s, will change.

5.2. Canonical Conley-Zehnder indices for Maslov zero knots

Suppose that there exists s, compatible with L, which is globally nonzero. As ex-

plained above, the existence of such an s is equivalent to the rotation number of L

being zero.

We can assign canonical Conley-Zehnder indices to each contractible Reeb chord, via

the following non-constructive geometric argument. First recall that a Reeb chord is

contractible if it is as a smooth path with boundary on L. Clearly every Reeb chord

on a connected Legendrian knot (in R3) is contractible.

To define the canonical Conley-Zehnder index, pick s0, s1 which are globally non-zero

and compatible with L, and agree with ∂⊗2
x at infinity. We will show that s0, s1

1Here relative means s ̸∈ −TL⊗2 holds at the endpoints during the homotopy.
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assign the same Conley-Zehnder indices to each contractible Reeb chord (and hence

we obtain canonical indices).

In [0, 1]×R3, the relative Euler class of s0, s1 is a compact surface Σ without boundary.

Here the relative Euler class Σ is the zero set of a generic extension s interpolating

between s0 and s1, which remains compatible along L.

Let c be a Reeb chord. By a generic perturbation, we may suppose that

d = Σ ∩ ([0, 1]× c)

is a finite collection of transverse points all contained in the interior. Let ct be a

contraction of c, i.e., c0 = c and c1 is a constant on L. Then [0, 1]× ct can be thought

of as a smooth family of maps. Since [0, 1] × c1 has zero homological intersection

number with Σ, we conclude that d = 0 homologically, i.e., the signs of the points in

d add up to 0.

By standard cancellation results, we can perturb the section s near [0, 1]× c, relative

its boundary, so as to make it non-vanishing. In this fashion, we may suppose that

s is non-vanishing along each Reeb chord during the homotopy from s0 to s1. In

particular, by continuity of the Conley-Zehnder index, we conclude that s0 and s1

assign the same Conley-Zehnder indices.

5.3. Maslov class and vertical tangencies

Suppose that L is a Legendrian knot with Morse type crossings.

Let ξ ≃ pr∗R2, equipped with the unitary structure so that dpr is a unitary isomor-

phism. Here pr is the Lagrangian projection. Let s0 = ∂x ⊗ ∂x be considered as a

section of ξ⊗2.

Recall that s0 is compatible with a Legendrian knot if s0 ̸∈ −TL⊗2 holds everywhere.

Standard properties of Hermitian metrics implies that this is equivalent to g(∂x, TL) ̸=
0 holding everywhere. Thus, we see that the failure of compatibility with s0 is located

precisely at the vertical tangencies of L. We will now explain how to do a local surgery

to s0 near the vertical tangencies, returning a new section s which is compatible with

L.

We will analyze this problem by picking local unitary frames for ξ near a vertical

tangency so that TL is identified with R. In this local chart, the vertical tangencies

satisfy g(v, 1) = 0, where v is the representation of ∂x in the local unitary frame. See

§5.3.2 for more details.
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5.3.1. A linear surgery argument. In general, suppose that v : R3 → C× satisfies

f(x, y, z) := g(v(x, y, z), 1),

has a transverse zero set which intersects (0, 0, 0) and is transverse to ∂y. In other

words, the map v crosses the iR axis at (0, 0, 0). Compact perturbations of v through

the space of C× valued functions will never be able to kill the zero locus of f , and

f(0, y, 0) will always have a zero for some value of y. Indeed, this follows from the

intermediate value theorem, since f changes sign.

However, when one passes to the tensor product, i.e., considering s = v ⊗ v rather

than v, then we can perturb s on arbitrarily small compact subsets of (0, 0, 0) so that

s ̸∈ (−∞, 0]. This will come at the expense of a non-empty zero set M = s−1(0)

which links {0} × R× {0}.

First we set-up a local model. Using that iR is the orthogonal complement to 1, we

may suppose that

v(x, y, z) = e±iyi

for (x, y, z) ∈ [−δ, δ]3. This is possible by a simple deformation, and replacing v by

−v if necessary. We will now define a replacement ṽ.

Let us focus on the + case. The definition of the replacement ṽ(0, y, 0) is summarized

in Figure 3. There ay + b is the unique linear function on [−δ, δ] which equals −δ
when y = −δ and equals −π+δ when y = δ. (note that ieiδ−iπ = −ieiδ is the negative
of the endpoint of v). It is clear that ay + b is strictly bounded in (−π/2, 0) on its

domain, and hence iei(ay+b) is never orthogonal to 1.

v

ṽ

ṽ(y) = iei(ay+b)

v(y) = ieiy

Figure 3. v versus ṽ. Note that ṽ is never orthogonal to 1, and crosses
i positively.

By construction, s0 = v ⊗ v and s1 = ṽ ⊗ ṽ have the same restrictions to the planes

y ∈ {−δ, δ}, and s1 is never in (−∞, 0]. This means that s1 is compatible along the

y-axis.

Introduce the surgered section:

s = (1− β(x2 + z2))s0 + β(x2 + z2)s1,
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where β equals 1 on [0, r0], and equals 0 on [r1,∞), with 0 < r0 < r1 < δ. We suppose

that β′ is strictly negative on (r0, r1). Then s agrees with s0 on the boundary of the

box [−δ, δ]3. Since {0} × R × {0} is contained in the region where β = 1, we know

that s is never in (−∞, 0] along the y-axis, as desired. However, s will have a zero

set contained in the region x2 + z2 ∈ (r0, r1).

x

z y

− +

Figure 4. The zero set of s is a cooriented linking circle. The left
is the projection to the x, y plane. The signs are determined by the
natural coorientation of the zero set, discussed below.

To see why the zero set is a circle, we simply compute:

−s = (1− β)e2iy + βe2i(ay+b) =⇒ −e−2iys = (1− β) + βe2i(cy+b).

Here cy + b is the unique linear function which equals 0 when y = −δ and −π when

y = +δ. In particular, after a linear reparametrization of the y coordinate to take

time [0, 1], we have that:

−e−2iys = (1− β) + βe−2πit.

This has a zero if and only if t = 0.5 and β = 0.5. By our assumption on β, the set

β = 0.5 is a circle x2 + z2 = r in the plane centered at y = 0, for some r ∈ (r0, r1).

5.3.1.1. Coorientation of the zero set. As s is a section of a complex line bundle,

its zero set inherits a natural coorientation. This coorientation can be computed by

linearizing s′ = −e−2iys when t = 0.5 and β = 0.5, whereby we obtain

ds′ = −2β′dr + 2πiβdt = adr + ibdy where a, b > 0.

This implies that (∂r, ∂y) forms an oriented basis for the normal plane to the zero

locus. Here ∂r points radially away from the y-axis.

In the −, when v crosses iR negatively, we have s′ = (1 − β) + βe2πit, and the

linearization becomes ds′ = adr − ibdy where a, b > 0. In particular, (−∂r, ∂y) forms

an oriented basis.

5.3.2. The Maslov class via surgery near the vertical tangencies. In the standard

coordinate system, there are two possibilities for a vertical tangency, either x′′ > 0 or

x′′ < 0.
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x′′ < 0

+ −

x′′ > 0

+−

Figure 5. Two kinds of vertical tangencies. We draw the link as a
dashed line. The signs determine the natural coorientation of the link.

Let p be the location of the vertical tangency. We apply the argument in the previous

section. By picking a travelling oriented orthonormal frame for ξ nearby p, we may

suppose that 1 spans TL and agrees with ∂y at p. The vector field v which is ∂x in

the old frame is now non-constant in this frame.

However, we know that g(v, 1) either decreases from positive to negative (x′′ < 0)

or increases from negative to positive (x′′ > 0). In both cases, v crosses −i (since
J∂x = ∂y holds in the standard coordinate system, so ∂x = −J∂y).

The surgery argument implies that we can deform s = v ⊗ v in an arbitrarily small

neighborhood of p so that it satisfies s ̸∈ (−∞, 0] on L (near p). This comes at the

expense of adding a single link to the Maslov class Ms. The resulting section s is now

compatible at p.

In the x′′ < 0 case, (−∂r, ∂y) forms an oriented basis for the normal bundle to the

linking circle. On the other hand, in the x′′ > 0 case, (∂r, ∂y) forms an oriented basis.

This explains the signs appearing in Figure 5.

The choice of s on the left of Figure 6 is equal to ∂x⊗∂x outside of a small neighborhood

of the vertical tangencies, and hence it is easy to compute the Conley-Zehnder indices

(they are either −1 or 0). On the left we have replaced s by a globally non-vanishing

one by cancelling the links in the Maslov class; during this process, the Conley-

Zehnder index will change to −2. This is the canonical Conley-Zehnder index. To

deduce the canonical Conley-Zehnder index, we use the chord crossing moves from

§5.4, and the following cancellation result.
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0 −2

Figure 6. The Maslov class Ms = s−1(0) is a collection of linking
circles with coorientations. As above, the black dots signify positive
signs.

5.3.3. Cancellation of oppositely oriented links. In this section, we describe another

linear surgery argument, which allows us to “cancel” nearby components of the Maslov

class, provided their orientations are opposite. Let us suppose that L is locally aligned

with the x-axis in a neighborhood of two oppositely oriented Maslov links.

=

Figure 7. Cancellation of adjacent Maslov class links.

Via a smooth isotopy remaining disjoint from L and the Reeb chords, we can move

the nearby links into standard position, which we suppose is:

M− =
{
x = −δ, y2 + z2 = δ2

}
and M+ =

{
x = δ, y2 + z2 = δ2

}
.

This isotopy can be achieved through Maslov classes, i.e., zero sets of s.

Consider the sphere S = {x2 + y2 + z2 = 4δ2}. Clearly this sphere contains M−,M+,

and S ∩ L consists of the points (±2δ, 0, 0). Without loss of generality, let us rescale

the figure so δ = 1. Let t = s|S.

We use the identification of det(ξ) with C sending ∂x⊗∂x onto 1. We can require that

s = 1 along the x-axis, which can be achieved by an obvious deformation (recalling

that s is not allowed to point in the −1 direction).

Let H be the upper half-plane {(x, y, 0) : y > 0}, and note that the union of the links

M± have zero homological intersection with H. Consider a generic ray R = eiθ[0,∞),

θ ̸∈ 2πZ. Then s−1(R) is a cobordism from s−1(0) (the two links) and t−1(R). It

follows that t−1(R) has zero homological intersection with the arc H ∩S, which joins

(−2, 0, 0) to (2, 0, 0). A standard cancellation of zeros argument implies that t can
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be homotoped through non-vanishing sections so that the image of t is disjoint from

R. Clearly C R deformation retracts on {1}, and hence t can be homotoped to the

constant 1 through non-vanishing sections which stay 1 on (±2, 0, 0).

Let S1, S2, S3 be three concentric spheres with S = S3. Let Bi be the corresponding

balls, and suppose that M± ∈ B1. Between S1 and S2, do a homotopy from s|S1 to

the constant 1 (this exists by the same argument we gave for t). Then, between S2

and S = S3, do a homotopy from 1 to t = s|S3 . This agrees with s on the boundary

of the shell region, and hence we can simply replace s on the shell-region by the new

section without affecting the zero set. Thus we may suppose that s equals 1 on S2.

Now 1 and s agree on the boundary ∂B2 = S2. We simply replace s|B2 with 1, which

cancels the zero set, as desired.

This may seem like a discontinuous process, but it is not. Indeed, each time we

do a “replacement” we should imagine performing a straight-line homotopy. During

this process, a zero set may form (and then cancel), but, crucially, these changes

in the zero set are constrained to the region we do the replacement. Moreover, by

construction, these straight-line homotopies will remain valid Maslov classes for L.

5.4. Chord crossing moves for the Maslov class

k k + 1

k

=

=
k + 1

Figure 8. Chord crossing moves for the linking Maslov class, and the
resulting change in the Conley-Zehnder index.

In this section we determine how the Conley-Zehnder index of a chord c, as determined

by s, changes during homotopies where s is allowed to vanish on c. We will encode

the results as crossing moves in the Lagrangian projection, as shown in Figure 8.

There are two types of crossings we need to consider; depending on whether the link

travels along the upper or lower strands. We also recall that the Conley-Zehnder index

only depends on the germs of the Legendrians at the endpoints, and is unchanged as

long the projections to R2 remain transverse and s remains non-zero along the chord.

This gives us a lot of flexibility for proving the validity of the crossing moves.
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5.4.1. Signs of punctures. Every half-infinite holomorphic strip asymptotic to a Reeb

chord has a well-defined sign. This is summarized in the following figure.

s
t

s
t

s

t

s

t

s
t

Figure 9. The t-direction always points from the lower strand to the
upper strand. If the s direction points towards the puncture, the punc-
ture is positive. If the s direction points away from the puncture, the
puncture is negative.

5.4.2. The dimension formula for holomorphic curves. Let µCZ(c, s) be the Conley-

Zehnder index assigned to c by a compatible s. If u is a holomorphic curve in the sym-

plectization (of Y 3), then the virtual dimension of the space of nearby parametrized

maps is given by:

d(u) = 2X(Σ̄)− |Γ−| − |Γint|+Ms · [u] +
∑

Γ+
µCZ(c, s)−

∑
Γ−
µCZ(c, s),

using Theorem 1.3 with n = 1. Indeed, for any smooth u on a boundary punctured

surface which is holomorphic near the punctures (and has finite energy), the quantity

d(u) can be defined as the Fredholm index of a certain family of linearized operators

associated to u, i.e., we do not require u to be holomorphic everywhere in order to

conclude that d(u) is independent of s. See §4.4.1.

5.4.3. Lifting holomorphic curves to the symplectization. Let (σ, z, x, y) be the stan-

dard coordinates on the symplectization of the 1-jet space of R. In these coordinates,

a complex structure J is admissible if and only if it is σ-invariant and satisfies the

equation:

dσ ◦ J = −dz + ydx.

This implies that ξ = ker(dz − ydx) ∩ ker dσ is a complex subspace.

The space of admissible almost complex structures for R3 is therefore parametrized

by z-dependent complex structures on R2, using the identification ξ ≃ pr∗R2.

Henceforth, let us suppose that we take the standard complex structure on R2, inde-

pendent of z. In these coordinates, a holomorphic curve u is holomorphic if and only

if x+ iy is holomorphic and:

∂z

∂t
− ∂σ

∂s
= y

∂x

∂t

∂σ

∂t
+
∂z

∂s
= y

∂x

∂s
.
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For our purposes, it suffices to know how to holomorphically lift ends near the Reeb

chords, where we may suppose that lower and upper strands Legendrians are described

by y = y0 and y = y0 + cx. It follows that the z-coordinates of the upper and lower

strands are described by:

z = y0x and z = T + y0x+
1

2
c2x.

Let z̃ = z − (1 − t)y0x − t(T + y0x + 1
2
c2x), let σ̃ = σ − sT , and observe that these

modified coordinates need to satisfy the equations:

∂̄(σ̃ + iz̃) = E(x, y) · ∇x.

Let us suppose that u is defined on a half infinite strip, and y = y0+ cx, y = y0 holds

along the top and bottom boundaries, respectively.

The next step is to appeal to a local solvability result to ensure there exists a solution

where z = 0 on the boundary (this corresponds to (σ, z, x, y) taking boundary values

on L). The usual ∂̄ operator is a bit non-optimal on infinite strips, as it as degenerate

asymptotics. If we suppose that x, y are in W 1,p,δ for all k and for some rate δ, then

we can write

σ′ = eδ|s|σ̃ and z′ = eδ|s|z̃,

and observe that

(∂̄ ± δ)(σ′ + iz′) = E(x, y) · (eδ|s|∇x).

Since ∂̄ ± δ is an isomorphism acting on W 1,p(R× [0, 1],C,R), as proven in Theorem

6.20. We can solve this equation for σ′+ iz′ on the sub-end [1,∞)× [0, 1] (by using a

cut-off function on the first part [0, 1]× [0, 1]). It follows easily that σ′+ iz′ is smooth

and converges to zero at infinity.

There are obvious candidates for the x, y projections. We can take

x+ iy = x0 + iy0 + ae±θ(s+it),

for appropriate a, θ, x0, y0. This decays exponentially (in one of the ends).

To summarize, when the Legendrians take the above form, we can find local holo-

morphic ends converging to the associated Reeb chord. The sign of the puncture is

determined by Figure 9.

5.4.3.1. Proving the chord crossing moves. We prove the chord crossing moves by

reducing to the case of two particular knots, one of which is shown in Figure 10 and

the other is its reflection. Each has a single Reeb chord at the origin.
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Figure 10. Adding a pair of cancelling links toMs. We only show the
part of the Maslov class located in {x2 + y2 < δ}. The shaded region
represents the smooth map u.

As explained previously, there exist smooth maps u : H̄ → R4 which are holomorphic

near ∞, have boundary on L, and whose projections to R2 are given by x + iy =

ae−θ(s+it), near ∞, where θ = π/2 and a ∈ {i,−i}. Both have positive punctures.

Let s be a compatible section for this knot, defining a Maslov classMs. By an isotopy

of Ms, we may suppose that Ms is disjoint from {x2 + y2 < δ}. By a similar linear

surgery argument given above, we can invert the cancellation process, and add a pair

of cancelling links to Ms, without changing the Conley-Zehnder index associated to

c.

Referring to Figure 10, when we slide the rightmost link over, the virtual dimension

d(u) does not change. However, it is easy to see that Ms · [u] must decrease by 1, and

hence the Conley-Zehnder index of the chord must increase by 1, since u has a positive

puncture. This proves the first chord crossing rule in Figure 8. The second rule is

proved in the same manner. The only difference is that u has a negative puncture,

which affects the dimension formula. We leave the details to the reader.

5.5. Comparison with other gradings

In [Etn04, §4.1], the author defines the grading of a Reeb chord c, joining p− to

p+, to be the degree of the Gauss map restricted to either embedded arc joining p+

to p−, post-concatenated with a clockwise rotation from dpr(TL−) to dpr(TL+). In

[EES02, §2.3], the authors define the Conley-Zehnder index of a Reeb chord c in

the same way, except using a counterclockwise rotation in the last step. Then the

authors define the grading to be the Conley-Zehnder index minus 1. The grading,

in general, is only well-defined when we consider the “capping path” as part of the

data; however, in the case when the rotation number of the knot is zero, the grading

is independent of the path.
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The goal of this section is to prove that our canonical Conley-Zehnder indices (§5.2)
agree with the “gradings” defined above for knots with rotation number zero.

The argument is simple; let us suppose, without loss of generality, that all of the

crossings in our knot take the form shown in Figure 13:

Figure 11. Local model for the Reeb chord. The upper strand has
negative slope

At the start, we use the s arising from surgery at the vertical tangencies, whose

Maslov class is a collection of linking circles at the vertical tangencies. As we travel

from p+ to p−, we “pick up” each Maslov linking circle we pass along the way, thereby

obtaining a picture of the form shown in Figure 13.

0

Figure 12. While travelling from p+ to p− along half of the knot, we
gather all the linking circles in the Maslov class.

It is easy to see that the signed count of the linking circles, say d, is equal to the

degree of the Gauss map when we close up by a clockwise rotation, since no vertical

tangengies are introduced when we rotate clockwise from a horizontal line to a line

with negative slope. If we instead rotated counter-clockwise to complete the loop,

then we cross another vertical tangency and would introduce a +1 to the winding

number. In other words, d equals the grading as defined in [Etn04] and [EES02].

d

Figure 13. Gather the linking circles on the other half of the knot
and cancel them with the ones we crossed over.

Now, cross all the links to the other side of the Reeb chord, which (by the chord

crossing rules) increases its index from 0 to d. Then, since the knot is presumed to

have rotation number 0, we can gather all the linking circles on the other half of the
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knot and cancel them with the ones near the chord, as shown above. At the end

of this process, we have killed the Maslov class, and hence the resulting s computes

the canonical Conley-Zehnder indices. Thus the grading d is equal to the canonical

Conley-Zehnder index, as desired. The verification of the signs is left to the reader.

5.6. Examples

5.6.1. Killing the Maslov class example. We compute the canonical Conley-Zehnder

indices for the knot shown in Figure 14, using the algorithm explained in §5.3.2.

0

0

0

1

−2

1

Figure 14. Killing the Maslov class for a knot with rotation number
zero, and the resulting canonical Conley-Zehnder indices. We apply the
dimension formula to the shaded region below.

5.6.1.1. Applying the dimension formula. Recall that the dimension formula is given

by:

d(u) = 2X(Σ̄)− |Γ−|+Ms · [u] +
∑
Γ+

µCZ(c, s)−
∑
Γ−

µCZ(c, s).

When we apply this to the shaded region, using the fact that all the punctures are

positive, we obtain d(u) = 2+1+1−2−2 = 0. This is the expected dimension of the

space of parametrized holomorphic maps with the same underlying domain. Since the

domain is a four-times punctured disk, there is a 1-dimensional space of conformal

parameters P . The condition that d(u) = 0 implies that the expected dimensions of

the fibers of the parametric moduli space M → P are 0-dimensional.

Assuming that M is cut transversally in the parametric sense, any regular value of

the map M → P must have empty fiber, because of the R-action by translation on

the domain. After quotienting by this action, we obtain a discrete set of points in

M/R, (and most conformal structures do not contribute to the count).
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In this sense, any holomorphic curve which projects to the shaded region contributes

to the parametric count of holomorphic curves where we allow varying conformal

parameters.

5.6.1.2. One of the Chekanov-Eliashberg knots. We cancel the Maslov Class for the

Chekanov-Eliashberg knot shown in Figure 1, and obtain its canonical Conley-Zehnder

indices.

1 1

1

1

2

−2

0

0 0





Chapter 6

The index formula

The main goal of this chapter is to prove that asymptotically non-degenerate Cauchy-

Riemann operators on surfaces with boundary punctures are Fredholm, and give a

formula for their Fredholm index in terms of topological data, i.e., provide an index

formula. Our index formula generalizes the result stated in [Sch95, Theorem 3.3.11]

(see also [Ger18, Theorem 3.1.2] and [Wen20, Theorem 5.4]).

To actually prove the index formula we adopt the technique introduced in [Tau96, §7]
(subsequently generalized by [Ger18, Chapter 3]), and deform our Cauchy-Riemann

operator D by an anti-linear lower order term σB. As explained in [Tau96], [Ger18],

and [Wen20], as σ → ∞ the kernel of D+σB concentrates near the positive zeros of

B and the cokernel of D+ σB is represented by sections supported near the negative

zeros of B. With some further analysis, one concludes that the signed count of zeros

of B equals the index of D + σB.

Our argument is complicated by the boundary ∂Σ. The most apparent difference is

that the anti-linear perturbation B can have zeros on the boundary, and, as we will

show, the boundary zeros split into four cases, two of which contribute 0 to the index,

and the other two contribute +1 and −1. See Figure 1 and 3. This phenomenon leads

to the “relative Euler characteristic” term in the index formula depending on the signs

of punctures – this is a novel phenomenon when compared with the ∂Σ = ∅ case. The

details of this part of the argument are presented in §8.

If the asymptotics of D do not match the asymptotics of D + σB for σ large, then

the Fredholm index will likely change during the deformation σ → ∞. There are two

approaches to deal with this: one way is to try to find B so that the asymptotics of

D match the asymptotics D + σB for all σ ∈ [0,∞) – this is the approach taken in

[Ger18, Chapter 3] and [Wen20, §5.8]. The other approach is to pick B without

regard to D, and then analyze the change in index as an “index gluing” problem. This

is the approach developed in §7.3, and it leads to a natural definition of the Conley-

Zehnder indices as Fredholm indices of certain operators. The necessary analytic

ingredient to make this work is the linear kernel gluing operation. See [Sch95, §3.2],
[FH93], and [Sei08, §11c] for similar gluing problems.

73
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Remark 6.1. There is other work which proves index formulas for Cauchy-Riemann

operators on surfaces with boundary punctures. See, for instance, [CEJ10, Appendix

A], and [Sei08, §11e]. Our work differs from theirs in how we present the index

formula (e.g., they do not define Conley-Zehnder indices for Reeb chords), and how

we prove the result.

6.1. Statement of the index formula

Let D be an asymptotically non-degenerate Cauchy-Riemann operator for the data

(Σ, ∂Σ,Γ±, E, F, C, [τ ]).

Briefly:

(1) Γ = Γ+ ∪ Γ− is collection of punctures which may be on the boundary (we

denote the punctured surface by Σ̇),

(2) (E,F ) is a complex vector bundle with totally real sub-bundle F ⊂ E|∂Σ̇
(3) for each z ∈ Γ, Cz ⊂ Σ̇ is a chosen cylindrical/strip-like end with holomorphic

coordinate s + it (there are four possibilities for Cz, depending on whether z ∈ Γ±

and z ∈ ∂Σ),

(4) [τ ] is an equivalence class of trivializations τz : (E|Cz , F |∂Cz) → (Cn,Rn) called

asymptotic trivializations. See §6.3.2 for more details.

We recall that Cauchy-Riemann operators are defined by their symbol. The asymptot-

ically non-degenerate condition means that for any τ ∈ [τ ], the coordinate represen-

tation Dτ in the end Cz is asymptotic to ∂s−Aτ
z as s→ ±∞ where Aτ

z = −i∂t−S(t)

is a non-degenerate asymptotic operator:

C∞([0, 1],Cn,Rn) → C∞([0, 1],Cn) or C∞(R/Z,Cn,Rn) → C∞(R/Z,Cn),

as explained in §1.

Theorem 6.2. For p > 1, D : W 1,p(E,F ) → Lp(Λ0,1 ⊗E) is Fredholm and its index

is given by

ind(D) = nX(Σ,Γ±) + µτ
Mas(E,F ) +

∑
z∈Γ+

µCZ(A
τ
z)−

∑
z∈Γ−

µCZ(A
τ
z),

where n is the complex rank of E, τ is an asymptotic trivialization of (E,F ), and:

(i) The relative Euler characteristic X(Σ,Γ±) is the count of zeros of a generic

vector field on Σ̇ which is tangent to ∂Σ̇ and points inwards along Γ− and outwards

along Γ+ (e.g., equal to ∂s in the ends Cz). Boundary zeros are counted according to

the rules in Figure 1. Interior are zeros are counted as usual. See §3 for examples.
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(ii) The Maslov index µτ
Mas(E,F ) is the signed count of zeros of a generic section σ

of (detE)⊗2 which (a) restricts to the canonical positive generator of (detF )⊗2 along

the boundary, and (b) is identically 1 in the asymptotic trivializations induced by τ .

The zeros are all interior.

(iii) The Conley-Zehnder index is the Fredholm index of any Cauchy-Riemann op-

erator on the trivial bundle E = Cn, F = Rn over an infinite strip/cylinder which

equals

∂su+ J0∂tu+ ū = ∂su+ J0∂tu+ Cu

at the negative end and ∂s − Aτ
z at the positive end. See Figure 2.

V = z

count = +1

V = −z

count = 0

V = z̄

count = 0

V = −z̄

count = −1

Figure 1. Boundary zeros either contribute ±1 or 0 to the index.

∂s + i∂t + C ∂s − Aτ
z

Figure 2. The Conley-Zehnder index is the Fredholm index of any
Cauchy-Riemann operator on the infinite strip or cylinder which inter-
polates between the two asymptotic conditions. The matrix C repre-
sents complex conjugation.

Remark 6.3. If ∂Σ = ∅, then this agrees with [Wen20, Theorem 5.4]. If Γ = ∅ then

this agrees with [MS12, Theorem C.1.10].

Remark 6.4. The definition of the Conley-Zehnder index as a Fredholm index sug-

gests a way to define determinant lines for asymptotic operators, namely as the Fred-

holm determinant of the operator in Figure 2. This is similar to [Abo14, Definition

1.4.3] or [Par19, Definition 2.46].

A kernel gluing theorem analogous to the one in §7.3 should establish a relationship

between the Fredholm determinant of D, the determinant lines of the asymptotic

operators, and the Fredholm determinant of a different Cauchy-Riemann operator

D1 where all the asymptotic operators are changed to −i∂t − C.
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The method of large anti-linear deformations considers a family Dσ = D0+σB (which

agrees with D1 when σ = 1). Moreover, B can be chosen so that Dσ is Fredholm for

all σ ≥ 1. See §8.2 for a precise definition of Dσ.

For large σ, we can explicitly describe the kernel and cokernel of Dσ as the R-vector
space generated by certain sections concentrated near certain zeros of B (i.e., each

zero either contributes ±1, or 0 to the index). In particular, the problem of orient-

ing the Fredholm determinant of Dσ reduces to the problem of orienting a vector

space generated by certain subsets of zeros of B. We do not pursue the question of

“coherently orienting” Fredholm determinants any further in this thesis.

6.2. Relative Euler characteristics for Riemann surfaces with boundary

punctures

In this section we give a more precise definition of the relative Euler characteristic

term appearing in the index formula. Suppose that (Σ, ∂Σ,Γ+,Γ−, C) is a Riemann

surface with punctures Γ = Γ+ ∪ Γ−, some of which may be on the boundary, and

cylindrical/strip-like ends Cz for each z ∈ Γ±. Each puncture in Γ+ has a cylindrical

end biholomorphic to [0,∞)× [0, 1] or [0,∞)×R/Z, and similarly for Γ− with [0,∞)

replaced by (−∞, 0]. Let s+it denote the holomorphic coordinate in these cylindrical

ends.

Let V be a vector field on Σ̇ := Σ Γ+ Γ− which agrees with ∂s in the cylindrical

ends, and which is everywhere tangent to ∂Σ̇. See Figure 3 for an illustration. By

choosing V generically, we can assume that the linearizations of V at its zeros are

non-degenerate. Let us agree to call such a vector field admissible for (Σ, ∂Σ,Γ±).

X = −1 X = −1 X = 0

Figure 3. Vector fields on surfaces with boundary punctures. Positive
punctures (i.e., in Γ+) are placed at the top of the figure while negative
punctures are placed at the bottom. The relative Euler characteristic
X is the count of zeros weighted as in Figure 1.
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If p ∈ Σ is a zero of V , and z = s+ it is a holomorphic coordinate with z(p) = 0, we

can write V as

V =
[
∂s ∂t

] [ a b

c d

][
s

t

]
+ higher order terms,

where the 2× 2 matrix is invertible.

If p is an interior zero, then we define the count of p to be the sign of the determinant

of the 2× 2 matrix. We can deform our vector field near p so that a = 1, d = ±1 and

b = c = 0 – this uses the fact that GL2(R) has two connected components. After this

deformation, the local coordinate representation of V is either z or z̄, depending on

whether the count of the p is ±1.

Suppose now that p is a boundary zero. Then we can pick z so that it takes values

in H̄, in which case we must have c = 0 and a > 0. We define:

count of p =



+1 if a > 0 and c > 0,

0 if a < 0 and c < 0,

0 if a > 0 and c < 0,

−1 if a < 0 and c < 0.

Unlike the case when p was an interior zero, we cannot freely deform the linearization,

since the linearization is required to map T∂Σ into T∂Σ. The four cases above depend

on whether the coordinate representation of V can be deformed to ±z or ±z̄, as shown
in Figure 1. Note that a ∈ R1×1 can be thought of as the linearization of the restriction

of V to ∂Σ, considered as a section of T∂Σ → ∂Σ.

Proposition 6.5. The sum of the counts of the zeros of V is independent of the

choice of V and the coordinate systems used. It does depend on the assignment of

signs to the boundary punctures Γ. The resulting integer is denoted X(Σ,Γ+,Γ−).

Proof. We do not actually use this invariance to prove the index formula, and hence

the proposition follows from the index formula. Indeed, one can use the large anti-

linear perturbation method from §8 to show that our count of zeros of V equals the

Fredholm index of the operator:

f 7→ D(f) := df + i · df · j + µ(−, V )f̄

acting on sections of the trivial line bundle C which take real values on ∂Σ̇. Here

µ is a Hermitian metric on T Σ̇ which is cylindrical in the ends. This completes the

proof. □
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6.2.1. Formula for the relative Euler characteristic. This relative Euler characteristic

is not too strange; indeed, we have the following simple formula which computes it:

Lemma 6.6. Let Σ̄ denote the unpunctured surface. Then

X(Σ,Γ+,Γ−) = X(Σ̄)−
∣∣Γint

∣∣− |∂Γ−| ,

where Γint and ∂Γ− are the interior punctures and boundary negative punctures,

respectively.

Proof. The proof is summarized in Figure 4. It is clear that by capping off:

(i) each interior puncture by a disk with a single interior zero (V (z) = ±z),

(ii) each negative boundary puncture with a half-plane of the form V (z) = z, and

(iii) each positive boundary punctures with a half-plane of the form V (z) = −z,

we will add 1 to the relative Euler characteristic for each interior puncture and each

negative boundary puncture. In the end, we obtain a vector field on an unpunctured

surface. As shown above, the relative Euler characteristic term is an invariant, in-

dependent of the choice of vector field, and hence we can use a different vector field

which is everywhere non-zero along the boundary. We conclude the desired result. □

Figure 4. Computing the relative Euler characteristic by capping off
each puncture. Each addition will change the relative Euler character-
istic by some computable amount, and we will obtain a vector field on
a surface without any punctures.

6.3. Asymptotically non-degenerate Cauchy-Riemann operators

6.3.1. Strip-like and cylindrical ends. Fix a Riemann surface Σ with boundary ∂Σ

and punctures Γ = Γ+ ∪ Γ−. Fix cylindrical ends around each of the punctures of

Γ; this means that we pick holomorphic coordinate disks or half-disks around each

z ∈ Γ±, and identify the disks with R± × R/Z via the map (s, t) 7→ e∓2π(s+it) and

the half-disks with R± × [0, 1] via the map (s, t) 7→ e∓π(s+it). Note that in order for
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this to make sense, we require picking lower half-disks around positive punctures and

upper half-disks around negative punctures.

Σ(ρ)

Cz2Cz1

Cz0

Cz2(ρ)Cz1(ρ)

Cz0(ρ)

Figure 5. A surface Σ with Γ+ = {z0} and Γ− = {z1, z2} and cho-
sen cylindrical ends. The precompact sub-domain Σ(ρ) is shown as the
shaded region. The bundle E has an equivalence class of unitary trivi-
alizations defined on the ends.

For each z ∈ Γ, let Cz denote the cylindrical end corresponding to z, and let Cz(ρ) ⊂
Cz denote the closed which translated by ρ deeper into the end, i.e., if z is a positive

boundary puncture then Cz(ρ) = [ρ,∞)×[0, 1], and similarly for the other possibilities

for z. See Figure 5. Let C(ρ) =
⋃

z∈ΓCz(ρ), with C = C(0). We let Σ(ρ) = Σ̇ C(ρ),

so that Σ(ρ) is a precompact sub-domain of Σ̇.

6.3.2. Asymptotically Hermitian structures. Suppose that (E, J) is a complex vector

bundle of rank n over Σ̇ and F ⊂ E|∂Σ̇ is a totally real sub-bundle. Similarly to

[Wen20, §4.1], we define an asymptotically Hermitian structure on (E,F, J) to be

an equivalence class of trivializations τ of E|C ≃ R2n which identify J with the

standard complex structure J0 and send F to Rn. Two trivializations are equivalent

provided the transition map between them converges to an s-independent unitary

transformation (i.e., multiplication by a t-dependent family Ω(t) ∈ U(n)). The inverse

X = τ−1 of a trivialization will be called an asymptotic unitary frame.

To be more precise, we require that the transition between τ1 and τ2 is multiplication

by Ω(s, t) and Ω(s, t)− Ω∞(t) ∈ W k,p for all k for some smooth Ω∞(t).

6.3.3. Sobolev spaces. We recall that the space of sections W k,p
loc (E) is well-defined

independently of any choice of auxiliary data on Σ̇ for all k ≥ 0, p ≥ 1. These are

sections which are of classW k,p
loc in any coordinate chart equipped with a trivialization

of E.
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For k − 2/p > 0, the Sobolev embedding theorem (see [MS12, Theorem B.1.11])

implies that W k,p
loc (E) sections are continuous, and hence we can define W k,p

loc (E,F ) ⊂
W k,p

loc (E) as the sections taking boundary values in F .

For k = 1 and p ∈ [1, 2], we say ξ ∈ W 1,p
loc (E,F ) if, for any choice of H̄-valued

coordinates equipped with trivializations identifying E with R2n and F with Rn, the

doubling1 of ξ (i.e., extension by ξ̄ on −H) is still of class W 1,p. It can be shown that

this agrees with the other definition of W 1,p
loc (E,F ) when p > 2. See Remark 6.16 for

more details.

Using the asymptotic Hermitian structure we can define Sobolev spaces which admit

Banach space norms. We say ξ ∈ W k,p(E,F ) if ξ ∈ W k,p
loc (E,F ) and τ ◦ ξ ∈ W k,p

using the standard Euclidean structure on the cylindrical ends (for any asymptotic

trivialization τ). To define a Banach space topology on W k,p(E,F ), we introduce the

norm:

∥ξ∥τ,k,p,g,µ,∇ :=
∑
z∈Γ

k∑
ℓ=0

∑
a+b=ℓ

[∫
Cz

∣∣∂as∂bt (τ ◦ ξ)∣∣p dsdt]1/p + ∥u∥Wk,p
g,µ,∇(Σ(1)) .

Here we make an arbitrary choice of metric g on Σ̇, and fiber-wise metric µ and

connection ∇ on E → Σ̇. It is straightforward to show that for any other choice of

g, µ,∇ we obtain an equivalent norm (since Σ(1) is precompact). It is also not hard

to show that two different choices of τ give equivalent norms.

The same process defines W k,p(E) for k ≥ 0. We denote W 0,p(E) =: Lp(E).

6.3.3.1. Exponentially weighted Sobolev spaces. Let σ be any function which equals

|s| on the ends C, and is bounded in [−1, 1] on Σ(1). For δ ∈ R define:

W k,p,δ(E,F ) =
{
u ∈ W k,p

loc : eδσu ∈ W k,p(E,F )
}
,

with the unique equivalence class of norms so that eδσ : W k,p,δ → W k,p is an isomor-

phism. This equivalence class of norm does not depend on σ.

Note that the Lp size of∇k(eδσu) can be bounded by the Lp norms of eδσu, eδσ∇u, . . . , eδσ∇ku

(by constants depending on σ and δ). We can therefore equivalently define W k,p,δ as

those u with eδσ∇ℓu ∈ Lp for all ℓ ≤ k.

6.3.4. Cauchy-Riemann operators with non-degenerate asymptotics. A first order par-

tial differential operator D : Γ(E) → Γ(Λ0,1⊗E) is called a Cauchy-Riemann operator

if

D(f ⊗ ξ) = df ⊗ ξ + (df · j)⊗ Jξ + f ·Dξ
1To make this precise, we double ξ in the sense of distributions.
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for all real-valued functions f and smooth sections ξ. Here j is the complex structure

on Σ and J is the fiber-wise complex structure on E.

We begin with a discussion of the local coordinate representations of Cauchy-Riemann

operators. If z = s + it is a holomorphic coordinate, then ds − idt trivializes Λ0,1.

Suppose that τ : E → Cn is a complex linear trivialization over E. Then τ−1(ek) = Xk

and τ−1(iek) = JXk define a local frame for E.

Write ξ = τ−1(u) =
∑

k ukXk =
∑

k akXk + bkJXk, where u = a + ib is a Cn-valued

function. We obtain:

D(
∑

akXk) =
∑

dak ⊗Xk + (dak · j)⊗ JXk + ak ·DXk

D(
∑

bkJXk) =
∑

dbk ⊗ JXk − (dbk · j)⊗Xk + bk ·D(JXk).

Hence, using c⊗ JXk = ic⊗Xk (for sections of Λ0,1 ⊗ E) we obtain:

D(τ−1(u)) =
∑

(duk + i · duk · j)⊗Xk + ak ·DXk + bk ·D(JXk).

It is straightforward to compute duk+i·duk ·j = (∂suk+i∂tuk)(ds−idt). In particular,

we have

D(τ−1(u)) =
n∑

k=1

(∂suk + i∂tuk) · (ds− idt)⊗Xk.

We note that (ds − idt) ⊗ Xk is a local (complex) frame for Λ0,1 ⊗ E. We denote

the inverse trivialization by τ1. If conjugate D by the complex trivializations τ−1 and

τ−1
1 : w 7→ w(ds− idt)⊗X, we conclude that

(6.1) τ1 ◦D ◦ τ−1 =: Dτ (u) = ∂su+ i∂tu+ S(s, t)u,

where S(s, t) is some smooth family of real linear matrices. Note that Dτ depends

both on the holomorphic coordinates used on the base and on the trivialization τ .

Let τ be an asymptotic trivialization for E. Using the holomorphic coordinate in the

ends C, we can compute the coordinate representation for D using τ . We say that D

has non-degenerate asymptotics provided that (6.1) satisfies

(6.2) sup
t

∣∣∂ks ∂ℓt (S(s, t)− S∞(t))
∣∣ → 0 as |s| → ∞,

for all k, ℓ ∈ N, for some smooth family of symmetric matrices S∞, and the corre-

sponding asymptotic operator

(6.3) Aτ = −i∂t − S∞(t) :

{
C∞([0, 1],Cn,Rn) → C∞([0, 1],Cn)

C∞(R/Z,Cn) → C∞(R/Z,Cn)

is injective. In this case we say that Aτ is non-degenerate. The two cases in (6.3) are

whether the cylindrical end corresponds to a boundary or interior puncture.
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Since the transition function between two asymptotic trivializations converges to Ω(t),

the condition that D has non-degenerate asymptotics is independent of the chosen τ .

Indeed, if τ1τ
−1
2 → Ω(t), then

Aτ2 = Ω(t)−1Aτ1Ω(t) = −i∂t − iΩ(t)−1Ω′(t)− Ω(t)−1S∞(t)Ω(t).

A straightforward computation shows that iΩ(t)−1Ω′(t) − Ω(t)−1S∞(t)Ω(t) is still

symmetric.

6.3.5. Some facts about non-degenerate asymptotic operators. In this section we fix a

non-degenerate asymptotic operator A = −i∂t −S(t) on [0, 1]. The analogous results

with [0, 1] replaced by R/Z are left to the reader.

Proposition 6.7. The map A : C∞([0, 1],Cn,Rn) → C∞([0, 1],Cn) extends to a

self-adjoint isomorphism

A : W 1,2([0, 1],Cn,Rn) → L2([0, 1],Cn).

By self-adjoint we mean that ⟨Av,w⟩ = ⟨v,Aw⟩ for all v, w ∈ W 1,2([0, 1],Cn,Rn).

See [Wen20, Corollary 3.14] for an alternative approach, yielding a proof in the R/Z
case.

Proof. It is clear that A extends to a bounded linear operator between the ad-

vertised Banach spaces. Since C∞([0, 1],Cn,Rn) is dense in W 1,2([0, 1],Cn,Rn) it

suffices to prove the self-adjointness for smooth functions u, v. This follows from a

straightforward integration-by-parts computation, using the fact that the matrix S(t)

is symmetric, and i is anti-symmetric. We leave this computation to the reader. Note

that it is crucial that both u, v take boundary values in Rn, otherwise the integration

by parts will fail.

It suffices to prove that A is a bijection, since continuous bijections between Banach

spaces are isomorphisms. Observe that any element in the kernel of Amust be smooth

(by 1-dimensional elliptic regularity). Since we assume that u 7→ Au is injective for

smooth u, we conclude that A is injective on W 1,2.

We will prove that A is surjective. Fix a smooth η, and we attempt to solve A(ξ) = η

for a smooth ξ:

(6.4)

i
∂ξ

∂t
+ S(t)ξ = −η(t) ⇐⇒ ∂ξ

∂t
− iS(t)ξ = iη(t).

⇐⇒ ∂

∂t
(F(t)ξ(t)) = F(t)iη(t),

⇐⇒ ξ(t) = F(t)−1ξ(0) + F(t)−1

∫ t

0

F(t′)iη(t′)dt′.
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where F′(t) = −F(t)iS(t) and Σ(0) = 0. This shows that we can solve A(ξ) = η for

many different choices of ξ, namely there is an R2n dimensional family of solutions

corresponding to the choice of ξ(0). We claim that (exactly) one of these solutions

will satisfy ξ(0), ξ(1) ∈ Rn. To see why, consider the affine map:

f : ξ(0) ∈ Rn 7→ F(1)−1ξ(0) + F (1)−1

∫ 1

0

F(t′)iη(t′)dt′ ∈ R2n.

This map parameterizes an n-dimensional affine subspace of R2n. Note that the

associated linear subspace F(1)−1Rn is transverse to Rn (otherwise we could find a

vector v ∈ Rn−1 so F(1)−1v ∈ Rn, and the above computation with η = 0 would

imply ξ(t) = F(t)−1v lies in the kernel of A).

Therefore f(Rn) intersects Rn in a unique point f(ξ(0)) = ξ(1). Thus (6.4) with this

special ξ(0) shows that A is surjective onto the smooth elements η.

To show that A is surjective in general, it suffices to prove that the image of A is

closed. This follows from the estimate

∥ξ∥W 1,2 ≤ C(∥A(ξ)∥L2 + ∥ξ∥L2)

and the fact that W 1,2 → L2 is a compact inclusion. This completes the proof of the

lemma. □

Proposition 6.8. There exists an orthonormal basis of L2([0, 1],Rn) consisting of

(smooth) eigenvectors of A. The union of all the eigenvalues is a discrete set Λ ⊂ R
disjoint from 0.

Proof. The key observation is that the following composition is a compact self-

adjoint operator (called the resolvent of A):

L2 W 1,2 L2.A−1 ⊂

This is because W 1,2 ⊂ L2 is a compact inclusion (Proof: if ∂tfn is bounded in

L2 then |fn(x)− fn(x+ t)| ≤ ct1/2, and hence fn is equicontinuous). Self-adjoint

compact operators have orthonormal eigenbases whose spectrum accumulates only

at 0 (see [Sim15, Theorem 3.2.3]). The desired result follows. □

6.3.6. Formal adjoints. The purpose of this section is to define the formal adjoint of a

Cauchy-Riemann operator. Formal adjoints will play an important role in establishing

the Fredholm property. A good reference in the case when ∂Σ = ∅ is [Wen20, §4.7].
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Let D be a Cauchy-Riemann operator for the data (Σ, ∂Σ,Γ±, C, E, F, [τ ]) as ex-

plained above. Fix a j-invariant Riemannian metric g on TΣ which is the Eu-

clidean metric in the cylindrical ends. The corresponding volume form is given by

dvol = g(j−,−).

Pick a Hermitian structure on (E,F ) which agrees with the asymptotically Hermitian

structure in the cylindrical ends C. This means that E is equipped with a fiber-wise

metric g which is J-invariant and F is g-orthogonal to JF . In other words, F is

Lagrangian for the symplectic form g(J−,−).

We define C-valued Hermitian metrics on E (and T Σ̇) by the formulas:

µ(X, Y ) = g(X, Y ) + ig(JX, Y ).

By our conventions, µ(X, JY ) = iµ(X, Y ) and µ(JX, Y ) = −iµ(X, Y ).

The bundle isomorphism Y 7→ µ(−, Y ) identifies T Σ̇ with Λ0,1. We use this to push

forward a Hermitian metric onto Λ0,1.

Given two complex vector bundles E1, E2 with Hermitian metrics µ1, µ2 we can endow

a Hermitian metric µ1 ⊗ µ2 on E1 ⊗ E2 by the formula:

µ1 ⊗ µ2(X1 ⊗X2, Y1 ⊗ Y2) = µ1(X1, Y1)µ2(X2, Y2).

Via this construction, the bundles E and Λ0,1 ⊗E are both equipped with Hermitian

metrics.

With these preliminaries out of the way, we say that D∗ : Γ(Λ0,1 ⊗ E) → Γ(E) is a

formal adjoint of D if

(6.5) Re

∫
Σ̇

µ(D(ξ), η) dvol = Re

∫
Σ̇

µ(ξ,D∗(η)) dvol,

for all ξ ∈ Γ0(E,F ) and η ∈ Γ0(Λ
0,1 ⊗ E,F ∗). Here F ∗ ⊂ Λ0,1 ⊗ E is the totally-

real sub-bundle of maps which map T∂Σ into F , and Γ0(E,F ) is the set of smooth

compactly supported sections of E which take boundary values in F .

Since Re(µ) is a Riemannian metric, formal adjoints are necessarily unique. We will

derive a formula for the formal adjoint in local trivializations below. By patching

together the local descriptions we deduce that formal adjoints always exist.

Let z = s + it be a holomorphic coordinate and τ : E → Cn a local unitary trivial-

ization of E defined on the domain of z. Let X1, · · · , Xn be the unitary frame of E

induced by τ . Recall that we have an associated trivialization τ1 : Λ0,1 ⊗ E → Cn

which satisfies

τ−1
1 (w) =

∑
k

wk(ds− idt)⊗Xk.
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The equation (6.1) shows τ1 ◦D ◦ τ−1(u) = ∂su+ i∂tu+ S(s, t)u.

To incorporate the boundary conditions, we require that z takes values in R× [0, 1],

z(∂Σ̇) ⊂ R×{0, 1}, and τ identifies F with Rn. We do not require that z is surjective,

e.g., it could take values in D(1) ∩ H̄, or i/2 +D(1/2).

Lemma 6.9. If D∗ is a formal adjoint for D, then for sections w with compact

support in the above coordinate chart we have

(6.6) |∂s|2 τ ◦D∗ ◦ τ−1
1 (w) = −∂sw + i∂tw + S(s, t)Tw,

where |∂s|2 = µ(∂s, ∂s) and S(s, t)
T is the transpose matrix.

Proof. The first thing we do is derive formulas for the Hermitian metrics µ. Because

τ is a unitary transformation, we have

µ(τ−1(u), τ−1(v)) =
∑
k

ūkvk =: µ0(u, v).

Unfortunately, τ1 is not a unitary transformation because ds − idt is not a unitary

frame of Λ0,1. We easily compute µ(−, ∂s) = |∂s|2 (ds− idt) (by inserting ∂s, ∂t into

both sides). Since the Hermitian metric on Λ0,1 is pushed forward from TΣ we have

|∂s|4 µ(ds− idt, ds− idt) = µ(∂s, ∂s) = |∂s|2 =⇒ |ds− idt|2 = |∂s|−2 .

We can therefore compute

µ(τ−1
1 (u), τ−1

1 (v)) =
∑
k,ℓ

µ(uk(ds− idt)⊗Xk, vℓ(ds− idt)⊗Xℓ) = |∂s|−2 µ0(u, v).

It is also easy to compute that dvol = |∂s|2 dsdt.

Let w and u be Cn valued functions which takes values in Rn on R × {0, 1}. We

compute

µ(τ−1(u), D∗ ◦ τ−1
1 (w)) = µ0(u, τ ◦D∗ ◦ τ−1

1 (w)).

On the other hand, we have

µ(D ◦ τ−1(u), τ−1
1 (w)) = |∂s|−2 µ0(τ1 ◦D ◦ τ−1(u), w).

Since real linear combinations of Xk lie in F , we are allowed to apply the formal

adjoint property with ξ = τ−1 ◦ u and η = τ−1
1 ◦ w:

Re

∫
µ(D ◦ τ−1(u), τ−1

1 (w))dvol = Re

∫
µ(τ−1(u), D∗ ◦ τ−1

1 (w))dvol.

This implies that:

Re

∫
µ0(τ1 ◦D ◦ τ−1(u), w)ds ∧ dt = Re

∫
µ0(u, τ ◦D∗ ◦ τ−1

1 (w)) |∂s|2 ds ∧ dt.
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In particular, |∂s|2 τ ◦D∗ ◦ τ−1
1 is the formal adjoint of Dτ := τ1 ◦D ◦ τ−1 with respect

to the standard metric µ0 and volume form ds ∧ dt. Equation (6.1) gives a formula

for Dτ and so we can explicitly compute its adjoint:

Re

∫
µ0(∂su+ i∂tu+ S(s, t)u,w)dsdt = Re

∫
µ0(uk,−∂sw + i∂tu+ S(s, t)Tw)dsdt.

The boundary terms in the integration by parts are given by

Re

∫
R×{0,1}

µ0(iu, w)dsdt = 0.

It follows that |∂s|2 τ ◦D∗ ◦ τ−1
1 = −∂s + i∂t + S(s, t)T as desired. □

As a consequence, if s + it is the coordinate system in a cylindrical end Cz and τ is

an asymptotic trivialization, then

τ ◦D∗ ◦ τ−1
1 = −∂s + i∂t + S(s, t)T → −∂s − A as s→ ∞,

where Aτw = −i∂tw − S∞(t)w is the asymptotic operator for Dτ in the end Cz.

6.4. Regularity and the Fredholm property

The references for this section are [Sal97, §2.3], [Wen20, Chapter 4], [Sch95, Chap-

ter 3], and [MS12, Appendix B] (for the local Lp elliptic estimates).

6.4.1. Local elliptic estimates. Our first result is the following local elliptic estimate

for u 7→ ∂su+ i∂tu.

Theorem 6.10. Fix r < 1 and q > 1. There is a constant cq,r so that for all smooth

maps u : D̄(1) ∩ H̄ → Cn satisfying u(D(1) ∩ R) ⊂ Rn we have∫
D(r)∩H̄

|u|q + |∂xu|q + |∂yu|q dxdy ≤ cq,r

∫
D(1)∩H̄

|u|q + |∂xu+ i∂yu|q dxdy.

Proof. The theorem follows from [MS12, Theorem B.3.2] which concerns weak so-

lutions of the equation

∆w = f0 + ∂xf1 + ∂yf2,

with w, f0, f1, f2 ∈ Lp(D(1)). The conclusion is that the W 1,q size of w on a smaller

disk is bounded by the Lq sizes of w, f0, f1, f2. This uses the Calderon-Zygmund

inequality proved in [MS12, §B.2].

To apply their result to our setting, we extend u across the boundary by

u(x,−y) = ¯u(x, y).
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The extended function is no longer smooth. Let η = ∂xu + i∂yu (which potentially

has a jump discontinuity along R, but is still in Lq). We note that

η(x,−y) = ∂xū− i∂yū = ¯∂xu+ i∂yu = ¯η(x, y).

In particular, the size |η| is invariant under y 7→ −y.

Using the fact that (∂x − i∂y)(∂x + i∂y) = ∆ we have∫
D(1)

g0(u,∆ϕ) dxdy = −
∫
D(1)

g0(η, (∂x + i∂y)ϕ)dxdy.

To see why, apply Stokes’ Theorem separately on the upper and lower half-disks, and

then observe that the boundary terms will cancel; this uses u(D(1) ∩ R) ⊂ Rn. The

equality above satisfies the hypothesis of [MS12, Theorem B.3.2] and allows us to

conclude that W 1,q size of u is controlled by the Lq size of η and u. This implies the

desired result. □

6.4.2. Local elliptic regularity. In this section we wish to prove that weak solutions

of D∗(η) = f are in fact smooth, provided f is smooth. In order to talk about D∗(η),

we require the choice of Hermitian metrics µ on E, T Σ̇, as in §6.3.6.

More precisely, we wish to prove the following:

Proposition 6.11. Let q > 1. If η ∈ Lq
loc(Λ

0,1 ⊗ E), f is smooth, and D∗(η) = f

weakly in the sense that

Re

∫
Σ̇

µ(D(ξ), η)dvol = Re

∫
Σ̇

µ(ξ, f)dvol

for all ξ ∈ Γ0(E,F ), then η is in smooth and lies in Γ(Λ0,1 ⊗ E,F ∗).

The same holds true with (η,Λ0,1 ⊗E,F ∗, D∗) swapped with (ξ, E, F,D) throughout

the statement.

Remark 6.12. Note that “weakly” solving the equation implicitly incorporates the

boundary conditions, since we allow the test functions to be non-zero along the bound-

ary. We do require, however, that the test functions take values the appropriate

sub-bundle F .

Since smoothness is a local property, we can prove Proposition 6.11 by restricting our

attention to a coordinate chart z = s + it on which we have a unitary trivialization

τ : E → Cn. Without loss of generality, let us suppose that z takes values in D(1)∩H̄.

Writing τ(ξ) = u, τ1(η) = w, and f := τ(f), we compute

D∗(η) = f weakly =⇒ −∂sw + i∂tw + S(s, t)Tw = |∂s|−2 f weakly

D(ξ) = f weakly =⇒ ∂su+ i∂tu+ S(s, t)u = f weakly.
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We can simplify this a bit further by observing that

−∂sw + i∂tw + S(s, t)Tw = |∂s|−2 f

⇐⇒ ∂sw̄ + i∂tw̄ − CS(s, t)TCw̄ = − |∂s|−2 f̄ ,

where C is the matrix representing complex conjugation. Thus, Proposition 6.11

follows from:

Lemma 6.13. Let q > 1. Write Ω(r) = D(r) ∩ H̄, and suppose that

u ∈ Lq(Ω(1),Cn), f ∈ C∞( ¯Ω(1),Cn), and S ∈ C∞( ¯Ω(1),R2n×2n)

satisfy

(6.7) ∂su+ i∂tu+ S(s, t)u = f weakly,

in the sense that

Re

∫
Ω(1)

µ0(u,−∂sφ+ i∂tφ+ S(s, t)Tφ) = Re

∫
Ω(1)

µ0(f, φ),

for all compactly supported test functions φ which take values in Rn on Ω(1) ∩ R.
Then u is smooth and takes boundary values in Rn. Moreover for k ∈ N and r < 1,

there exists a constant c = c(k, q, S) so that

(6.8) ∥u∥Wk,q(D(r)∩H) ≤ c(∥u∥Lq(D(1)∩H) + ∥f∥Wk−1,q(D(1)∩H)).

Proof. Throughout the argument we will need to shrink the domain countably many

times. For this purpose, fix a sequence 1 > r1 > r2 > · · · > r∞ = r. Each time we

need to shrink the domain we will pass from Ω(rj) to Ω(rj+1). To obtain the constant

in (6.8), we will only need to shrink the domain finitely many times.

Our first goal is to upgrade u to a W 1,q distribution. We observe that

(∂s + i∂t)u = −S(s, t)u+ f weakly.

Notice that the right hand side lies in Lq. More generally, let us consider equations

of the form

(∂s + i∂t)u = F weakly,

where F ∈ Lq. Our strategy is to approximate u by a sequence of smooth sections un

taking real values along the boundary so that:

(i) un → u ∈ Lq and

(ii) ∥(∂s + i∂t)un∥Lq(Ω(r1))
is bounded by c1 ∥F∥Lq(Ω(1)).

We will explain how to do this approximation at the end of the proof. See [Wen20,

§2.4] for another approach in the case with H̄ replaced by C. See [MS12, §B.4]
for a similar bootstrapping argument (in a non-linear context). The estimate from
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Theorem 6.10 then implies that un is bounded in the W 1,q topology (on a smaller

domain Ω(r2)). Indeed, we have

∥un∥W 1,q(Ω(r2))
≤ c2(∥un∥Lq(Ω(1)) + ∥F∥Lq(Ω(1))).

Since the W 1,q spaces are reflexive, the Banach-Alaoglu theorem implies that some

subsequence of un converges in the weak topology to an element u′ ∈ W 1,q. Since

(Lq)∗ ⊂ (W 1,q)∗ we conclude that limn→∞⟨un, w⟩ = ⟨u′, w⟩ for all w ∈ (Lq)∗. However,

the same holds with u′ replaced by u (because un converges to u in the Lq norm).

Thus u = u′, and hence u ∈ W 1,q. Moreover, the Banach-Alaoglu theorem implies the

W 1,q norm of u is bounded above by lim sup ∥un∥W 1,q , and hence we conclude that

∥u∥W 1,q(Ω(r2))
≤ c2(∥u∥Lq(Ω(1)) + ∥F∥Lq(Ω(1))).

Suppose that we have shown that u is of class W k,q on some region Ω(r2k). Moreover,

suppose that the ∥u∥Wk,q(Ω(r2k))
is bounded by c(∥u∥Lq(Ω(1))+∥f∥Wk−1,q(Ω(1))) for some

c. Then we can differentiate the equation (6.7) k times in the s-direction to conclude:

(6.9) (∂s + i∂t)∂
k
su = ∂ks f −

k∑
ℓ=0

∂ℓsS(s, t) · ∂k−ℓ
s u = Fk weakly.

This differentiation is a bit subtle because the “weak” condition incorporates the

boundary conditions; we will explain this step in greater detail at the end of the

proof.

By our assumption on u, the right hand side is in Lq. The same argument given

above implies that ∂ksu is in W 1,q on a smaller region Ω(r2k+2) and that∥∥∂ksu∥∥W 1,q(Ω(r2k+2))
≤ c′(

∥∥∂ksu∥∥Lq(Ω(r2k))
+
∥∥∂ks f∥∥Lq(Ω(r2k))

+ C(S) ∥u∥Wk,q(Ω(r2k))
).

It is straightforward to use (6.7) to establish that, for a+ b = k,

∂as∂
b
tu = ib∂ksu+ lower order terms.

This equality should be interpreted as saying that both sides agree when integrated

against a test function which is supported in the interior of the domain (i.e., we do

not need to worry about the boundary). Since ∂ksu and the “lower order terms” are

of classW 1,q we conclude that all the kth order derivatives are inW 1,q(Ω(r2k+2)), and

hence u is in W k+1,q(Ω(r2k+2)). Keeping track of the various estimates implies that

∥u∥Wk+1,q(Ω(r2k+2))
≤ c′′(∥u∥Lq(Ω(1)) + ∥f∥Wk,q(Ω(1))).

The Sobolev embedding theorem [MS12, Theorem B.1.11] implies that u is smooth

on Ω(r∞). Part of the conclusion of the Sobolev embedding theorem is that u extends

smoothly to the boundary. We claim that u takes Rn values along the boundary. This
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follows from (6.7); pick any test function φ taking boundary values in Rn. It is easy

to see (by integration by parts) that

Re

∫
D(1)∩H̄

µ0(∂su+ i∂tu, φ)− µ0(u,−∂sφ+ i∂tφ)dsdt = Re

∫
D(1)∩R

µ0(u, iφ)ds.

If u did not take Rn-values along D(1) ∩ R, we could pick φ so that the right hand

side was non-zero. This would contradict (6.7).

This completes the proof, modulo our explanation of how to pick the approximations

un → u so that (i) and (ii) hold, and also why we can differentiate the weak equation

with respect to ∂s to obtain (6.9).

First we explain how to differentiate the weak equation. Suppose that (∂s+i∂t)w = F

weakly and w,F ∈ W 1,q. Then for any test function φ taking real-values along the

boundary, ∂sφ still takes real values along the boundary, and hence

(6.10) Re

∫
µ0(w, (−∂s + i∂t)∂sφ)dsdt = Re

∫
µ0(F, ∂sφ)dsdt.

The distributional derivative ∂s is defined (by duality) by how it integrates against

sections ψ supported in the interior of Ω(r):

Re

∫
µ0(F, ∂sψ)dsdt = Re

∫
−µ0(∂sF, ψ)dsdt,

However, the above holds even if ψ is non-zero along the boundary Ω(r) ∩R. To see

why, observe that

Re

∫
Ω(r)

µ0(∂sF, ψ)dsdt = Re lim
δ→0

∫
Ω(r)

µ0(∂sF, β(t/δ)ψ)dsdt,

where β : [0,∞) → [0, 1] vanishes near 0 and equals 1 on [1,∞). Since β(t/δ) is

independent of s, we can integrate by parts and conclude

Re

∫
Ω(r)

µ0(∂sF, ψ)dsdt = Re lim
δ→0

∫
Ω(r)

µ0(F, β(t/δ)∂sψ)dsdt

= Re

∫
Ω(r)

µ0(F, ∂sψ)dsdt.

In particular, this observation applied to (6.10) yields

Re

∫
µ0(∂sw, (−∂s + i∂t)φ)dsdt = Re

∫
µ0(∂sF, φ)dsdt,

which implies that (∂s + i∂t)∂sw = ∂sF still holds weakly.

Finally, we explain how to choose the approximations un → u so that (i) and (ii)

hold. First we extend u as an Lq distribution to D(1) by E(u)(s,−t) = ū(s, t) for
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t ≤ 0. This can be defined in the sense of distributions as

⟨E(u), φ⟩ = Re

∫
D(1)∩Ω

µ0(u(s, t), φ(s, t) + φ̄(s,−t))dsdt.

Let Φ be a radially symmetric bump function of unit mass supported in D(1), and

let Φn(s, t) = Φ(sn, tn). Then define un = Φn ∗ E(u). Clearly (i) holds. It can be

shown that

⟨Φn ∗ E(u), (−∂s + i∂t)φ⟩ = ⟨E(u), (−∂s + i∂t)(Φn ∗ φ)⟩ = ⟨E(F ), (Φn ∗ φ)⟩.

This uses the distributional definition of E(u) and the assumption that (∂s+i∂t)u = F

weakly. It also uses the fact that convolution commutes with ∂s + i∂t (as it is a

differential operator with constant coefficients).

We therefore conclude that Lq size of (∂s + i∂t)(Φn ∗ E)(u) is bounded by the Lq

size of F . This proves (ii). We observe that since Φn is a radially symmetric and

u(s,−t) = ū(s, t), un must take real values along the real axis. This completes the

proof. □

Note that a consequence of the above proof is the following smooth approximation

result:

Proposition 6.14. Let Ω(r) = H̄ ∩D(r) and q > 1. Suppose that u ∈ Lq(Ω(1),Cn)

has the property that ∂su+ i∂tu = F holds weakly for some F ∈ Lq(Ω(1),Cn). Then

for any r < 1, the doubling E(u) lies in W 1,q(D(r)) and there is a family of smooth

functions un on Ω(r) taking real values on ∂Ω(r) so that un → u in W 1,q(Ω(r)).

Proof. Let E(u) be the doubling of u, as in the previous proof, and recall that

Φn ∗ E(u) converges to E(u) in Lq(D(r′)) and is bounded in W 1,q(D(r′)). As we

argued above, this implies that some subsequence of Φn ∗ E(u) converges to E(u)

in the weak topology for W 1,q(Ω(r′)). In particular E(u) is in W 1,q(D(r′)). Basic

properties of convolutions ensure that Φn ∗E(u) converges to E(u) in the W 1,q(D(r))

norm. Thus we can set un = Φn ∗ E(u), as desired. □

Remark 6.15. Let u ∈ W 1,q(Ω(1),Cn,Rn), i.e., E(u) ∈ W 1,q(D(1),Cn,Rn). Then

(∂s + i∂t)Φn ∗E(u) = Fn converges to some element F ∈ Lq (in the sense of distribu-

tions). We claim that

∂su+ i∂tu = F holds weakly.

This is a sort of converse to the above proposition. Indeed, if φ takes real-values

along the boundary, we compute

⟨u,−∂φ⟩ = lim
n→∞

⟨Φn ∗ E(u),−∂φ⟩ = lim
n→∞

⟨∂̄Φn ∗ E(u), φ⟩ = ⟨F, φ⟩,

as desired.
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Remark 6.16. If u ∈ W 1,p(Ω(1),Cn) with p > 2, then u has well-defined boundary

values. Suppose that u takes real values along the boundary. We will show that

E(u) ∈ W 1,p
loc (D(1),Cn). Let φ be a test function taking real values along the bound-

ary. Let h : H̄ → [0, 1] be a function which (a) vanishes on R× [0, 1], (b) which equals

1 on R× [2,∞) and (c) which depends only on the t coordinate. Let F = ∂̄u (an Lp

distribution). We compute:

⟨u,−∂φ⟩ = lim
σ→∞

⟨h(σt)u,−∂φ⟩ = lim
σ
[σ⟨∂̄(h)(σt)u, φ⟩+ ⟨h(σt)F, φ⟩].

Note that ∂̄(h)(σt) is concentrated on a region Rσ of area at most σ−1. Since ∂̄(h) is

purely imaginary, we can write

⟨∂̄(h)(σt)u, φ⟩ = ⟨∂̄(h)(σt)Im(u),Re(φ)⟩+ ⟨∂̄(h)(σt)Re(u), Im(φ)⟩.

Our discussion of Rσ and ∂̄(h) implies that∣∣σ⟨∂̄(h)(σt)u, φ⟩∣∣ ≤ C(sup
Rσ

|Re(φ)| |Im(u)|+ |Re(u)| |Im(φ)|).

Because Im(u) and Im(φ) are both continuous and vanish on the boundary, we can

take the limit as σ → ∞ and conclude that limσ σ⟨∂̄(h)(σt)u, φ⟩ vanishes. We are

left with

⟨u,−∂φ⟩ = ⟨F, φ⟩

This says that ∂̄u = F weakly. As a consequence of Proposition 6.14 we conclude that

E(u) ∈ W 1,p(D(r)) and u can be approximated in W 1,p(D(r)) by smooth functions

taking real values along the boundary. This completes the proof.

6.4.3. Injectivity estimates for translation invariant operators. The next result con-

cerns various estimates for operators of the form

u 7→ ∂su+ i∂tu+ S(t)u = ∂su− Au

on the infinite strip R × [0, 1] with A a non-degenerate asymptotic operator. See

[Sal97, Lemma 2.4], [Wen20, §4.4], and [Sch95, §3.1.2] for similar results for the

infinite cylinder.

Proposition 6.17. Let D(u) = ∂su− Au on the infinite strip R× [0, 1], where A is

a non-degenerate asymptotic operator. Let ∥−∥ denote the L2 norm over [0, 1].

There exist constants c1, c2, c3,p so that, for all u ∈ C∞
0 (R× [0, 1],Cn,Rn), we have

(i)

∫
R
∥u∥2 + ∥∂su∥2 + ∥∂tu∥2 ds ≤ c1

∫
R
∥D(u)∥2 ds,

(ii)

∫
R
∥u∥p ds ≤ cp2

∫
R
∥D(u)∥p ds,
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(iii) ∥u∥W 1,p(R×[0,1]) ≤ c3,p ∥D(u)∥Lp(R×[0,1]), for p ≥ 2.

The same result holds with [0, 1] replaced by R/Z.

Remark 6.18. Before we prove the theorem, we wish to make a few remarks.

(1) All of these estimates roughly measure the injectivity of D.

(2) The results are proved for smooth functions with compact support, although

they imply estimates on various Banach space completions of C∞
0 by taking smooth

approximations. For instance, the reflection plus convolution technique used in the

proof of Lemma 6.13 can be used to approximate u ∈ W 1,p(R × [0, 1],Cn,Rn) by

smooth un taking real values along the boundary.

(3) Note that (i) is (iii) in the case p = 2. After we prove the proposition, we will

be able to upgrade (iii) to include the case q < 2. See Theorem 6.20.

(4) Note that (ii) can be considered as an estimate on a mixed (2, p) norm.

(5) We will give an elementary proof of (i), which is similar to the one given in

[Sch95]. See [Wen20] for an alternate proof of (i) which considers the Fourier trans-

formation in the s-variable.

(6) Our proofs of (ii) and (iii) are directly inspired by [Sal97]. The proof of (ii)

will use the spectral properties of A proved in Proposition 6.8. See [Sch95] for an

alternative proof of (iii).

Proof (of Proposition 6.17). Suppose that D(u) = η, i.e., ∂su = Au+η. To prove (i),

the idea is to consider the quantity γ(s) = ∥u(s, t)∥2 = ⟨u, u⟩, where ⟨−,−⟩ denotes
the real inner product on L2([0, 1],Cn). We differentiate γ(s) twice:

γ′′(s) = ⟨∂su, ∂su⟩+ ⟨u, ∂s∂su⟩ = ∥∂su∥2 + ⟨u, ∂s(Au+ η)⟩

= ∥∂su∥2 + ⟨Au, ∂su⟩+ ∂s⟨u, η⟩ − ⟨∂su, η⟩

= ∥∂su∥2 + ∥Au∥2 + ⟨Au, η⟩+ ∂s⟨u, η⟩ − ⟨∂su, η⟩.

Here we have used the fact that ∂sAu = A∂su and ⟨f, Ag⟩ = ⟨Af, g⟩. We integrate

this equality over R. Since u is smooth and compactly supported the integrals of

γ′′(s) and ∂s⟨u, η⟩ both vanish. We are left with:∫
∥∂su∥2 + ∥Au∥2 ds =

∫
⟨∂su− Au, η⟩ds.

Using Cauchy-Schwarz and 2ab ≤ a2 + b2 we have∫
⟨∂su− Au, η⟩ds ≤

∫
∥∂su∥ ∥η∥+ ∥Au∥ ∥η∥ ds

≤ 1

2

∫
∥∂su∥2 + ∥Au∥2 ds+

∫
∥η∥2 ds.
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Recalling that D(u) = η, it follows that∫
∥∂su∥2 + ∥Au∥2 ds ≤ 2

∫
∥D(u)∥2 ds.

Finally, using the fact that A : W 1,2([0, 1],Cn,Rn) → L2(Cn) is an isomorphism, we

conclude a constant c ≥ 1 so that ∥u∥2 + ∥∂tu∥2 ≤ c ∥Au∥2, and hence∫
∥u∥2 + ∥∂su∥2 + ∥∂tu∥2 ds ≤ 2c

∫
∥D(u)∥2 ds,

as desired. This completes the proof of (i).

For (ii) we use the spectral properties ofA. Let E± denote the splitting of L2([0, 1],Cn)

into positive and negative eigenspaces of A. The operator exp(−sA) converges on E+

for s ≥ 0 while the operator exp(−sA) converges on E− for s ≤ 0.

We can decompose u = u+ + u− where u+(s,−) ∈ E+ and u−(s,−) ∈ E− for all s. It

is straightforward to show that

for s ≥ 0: ∂s(exp(−sA)u+(s+ s0, t)) = exp(−sA)η+(s0 + s, t),

for s ≤ 0: ∂s(exp(−sA)u−(s+ s0, t)) = exp(−sA)η−(s0 + s, t),

where η± = ∂su±−Au±. Integrate the first ODE over [0,∞) and integrate the second

ODE over (−∞, 0], concluding that

(6.11)

u+(s0, t) = −
∫ ∞

0

exp(−sA)η+(s0 + s, t)ds,

u−(s0, t) =

∫ 0

−∞
exp(−sA)η−(s0 + s, t)ds.

Following [Sal97, Lemma 2.4], the idea is now to interpret this as a convolution

u± = K± ∗ η±, and then apply Young’s convolution inequality to conclude (ii).

Here are the details of the argument. First, we show the mixed (2, p) norm satisfies

a variational definition:[∫
R
∥u∥p ds

]1/p
= sup

{∫
R
⟨u, g⟩ds :

∫
R
∥g∥q ds = 1, where p−1 + q−1 = 1

}
.

It is easy to show that ≥ holds, and to show ≤ it suffices to prove it when the left

hand side is 1. In this case we can simply take g = ∥u∥p−2 u (if p > 2 this is fine, if

p < 2 then we can take a sequence g approximating ∥u∥p−2 u).

We fix g and compute∫
R
⟨u+(s0), g(s0)⟩ds0 = −

∫
R

∫ ∞

0

⟨exp(−sA)η+(s0 + s), g(s0)⟩dsds0.
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It is straightforward to check that

⟨exp(−sA)η+(s0 + s), g(s0)⟩ ≤ e−sλ+
min ∥η+(s0 + s)∥ ∥g(s0)∥ ,

where λ+min is the smallest positive eigenvalue.

Switching the order of integration and using Hölder’s inequality yields:∣∣∣∣∫
R

∫ ∞

0

⟨exp(−sA)η+(s0 + s), g(s0)⟩dsds0
∣∣∣∣ ≤ ∫ ∞

0

e−sλ+
minds

[∫
R
∥η+∥p ds0

]1/p
.

As a consequence the variational definition of the mixed 2, p norm implies that[∫
R
∥u+(s)∥p ds

]1/p
≤ 1

λ+min

[∫
R
∥η+∥p ds

]1/p
.

A similar argument shows that[∫
R
∥u−(s)∥p ds

]1/p
≤ −1

λ−max

[∫
R
∥η−∥p ds

]1/p
,

where λ−max is the largest negative eigenvalue.

Using the fact that ∥η±∥ ≤ ∥η∥ we conclude that∫
R
∥u∥p ds ≤ (

1

λ+min

− 1

λ−max

)p
∫
R
∥D(u)∥p ds.

This proves (ii).

To prove (iii) we again follow [Sal97, Lemma 2.4]. Fix p > 2. Let Ω(r) = [−r, r] ×
[0, 1]. It is straightforward to apply Theorem 6.10 and Sobolev embedding [MS12,

Theorem B.1.11] to conclude constants κ1, κ2, κ3, κ4 so that

∥u∥W 1,p(Ω(1)) ≤ κ1(∥D(u)∥Lp(Ω(1.5)) + ∥u∥Lp(Ω(1.5))),

∥u∥Lp(Ω(1.5)) ≤ κ2 ∥u∥W 1,2(Ω(1.5)) ,

∥u∥W 1,2(Ω(1.5)) ≤ κ3(∥D(u)∥L2(Ω(2)) + ∥u∥L2(Ω(2))),

∥D(u)∥L2(Ω(2)) ≤ κ4 ∥D(u)∥Lp(Ω(2)) .

The constant κ4 can be explicitly computed as 41−1/p. Combining these yields

∥u∥W 1,p(Ω(1)) ≤ κ1(1 + κ2κ3κ4) ∥D(u)∥Lp(Ω(1.5)) + κ1κ2κ3 ∥u∥L2(Ω(2)) .

Using (a+ b)p ≤ 2p(ap + bp) we conclude

∥u∥pW 1,p(Ω(1)) ≤ 2pκp1(1 + κ2κ3κ4)
p ∥D(u)∥pLp(Ω(2)) + (κ1κ2κ3)

p ∥u∥pL2(Ω(2)) .

It is straightforward to compute that

∥u∥pL2(Ω(2)) = [

∫ 2

−2

∥u∥2 ds]p/2 ≤ 4p/2−1

∫ 2

−2

∥u∥p ds.
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The above holds with Ω(r) replaced by 2k + Ω(r) for the same constants since D is

translation invariant. Hence we conclude that there is a constant C so that

∥u∥pW 1,p(2k+Ω(1)) ≤ C(∥D(u)∥pLp(2k+Ω(2)) +

∫ 2k+2

2k−2

∥u∥p ds).

Summing over all k ∈ Z yields

∥u∥pW 1,p(R×[0,1]) ≤ 2C(∥D(u)∥pLp(R×[0,1]) +

∫
R
∥u∥p ds).

The factor of 2 is because the domains 2k+Ω(2) cover R× [0, 1] “twice over.” Finally,

using part (ii), we conclude that

∥u∥pW 1,p(R×[0,1]) ≤ 2C(1 + cp2) ∥D(u)∥pLp(R×[0,1]) .

Setting c3,p = (2C(1 + cp2))
1/p completes the proof. □

The formula (6.11) can be used to prove the following regularity result. We still

assume that D = ∂s − A is a translation invariant operator on the infinite strip or

cylinder. As in the proof of Proposition 6.17 we assume that λ−max < 0 < λ+min are the

maximal negative and minimal positive eigenvalues of A.

Lemma 6.19. Let q > 1. If u ∈ Lq and D(u) = η for smooth η with compact

support, then u is smooth. Moreover, for all k, ℓ ∈ N there are constants C+
k,ℓ and

C−
k,ℓ depending on η so that

(6.12)

∣∣∂k∂ℓu(s, t)∣∣ ≤ C+
k,ℓe

λ−
maxs as s→ +∞,∣∣∂k∂ℓu(s, t)∣∣ ≤ C−

k,ℓe
λ+
mins as s→ −∞.

Both estimates are of exponential decay type. In particular, u ∈ W k,q for all k and

all q.

Proof. Let Ω(r) = [−r, r]×[0, 1]. By the local elliptic regularity result (Lemma 6.13)

we know that u is smooth, and that it satisfies elliptic estimates of the form

∥u∥Wk+1,q(s+Ω(1)) ≤ c(∥η∥Wk,q(s+Ω(2)) + ∥u∥Lq(s+Ω(2))).

We can take c to be independent of s since D is translation invariant. In particular,

it is clear that the L2([0, 1]) size ∥u(s,−)∥ decays as s→ ∞.

Decompose u = u+ + u−. It is straightforward to show that u± are still elements

of C∞(R,W 1,2([0, 1],Cn,Rn)). As in the proof of Proposition 6.17, we think of the

equation ∂su+−Au+ = η+ as an ordinary differential equation which we can explicitly
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solve:

∂s(exp(−sA)u+(s0 + s)) = exp(−sA)η(s0 + s)

=⇒ exp(−NA)u+(s0 +N)− u+(s0) =

∫ N

0

exp(−sA)η(s0 + s) ds.

Taking the limit as N → ∞ and using the fact that limN→∞ ∥u+(s0 +N)∥ = 0 we

conclude that

u+(s0, t) = −
∫ ∞

0

exp(−sA)η+(s0 + s, t) ds.

A similar argument shows that the other equation in (6.11) also holds, and hence we

have:

u(s0, t) =

∫ 0

−∞
exp(−sA)η−(s0 + s, t) ds−

∫ ∞

0

exp(−sA)η+(s0 + s, t) ds.

Suppose that η is supported in [−R,R]. Then for s0 < −R, the first integral always

vanishes, and the second integrand is supported on the region where s > −s0 − R

and so we have:

∥u(s0,−)∥ ≤ e(s0+R)λ+
min

∫ ∞

−∞
∥η+∥ ds = C(η−, R)e

s0λ
+
min (as s0 → −∞).

A similar deduction proves that

∥u(s0,−)∥ ≤ C(η+, R)e
s0λ

−
max (as s0 → +∞).

Now, by simply integrating the norm ∥u(s,−)∥ over s ∈ [s0 − 2, s0 + 2], we conclude

that

(6.13)
∥u∥L2(s+Ω(2)) ≤ C2e

sλ−
max as s→ +∞

∥u∥L2(s+Ω(2)) ≤ C2e
sλ+

max as s→ −∞.

Using the elliptic estimates for q = 2, we conclude that the W k,2 size of u on s+Ω(1)

also decays exponentially like (6.13). Since the Cℓ size is controlled by the W k+2,2

size, we ultimately conclude the desired result (6.12). □

We can upgrade the injectivity estimates to the following important result:

Theorem 6.20. Let D = ∂su − Au with A a non-degenerate asymptotic operator.

Let q > 1. The induced map D : W 1,q(R × [0, 1],Cn,Rn) → Lq(R × [0, 1],Cn) is an

isomorphism.

Proof. First we prove the case when q ≥ 2. Part (iii) of Proposition 6.17 implies

that D is injective and has closed image. Thus it suffices to prove that the image

of D is dense. If η is a smooth function with compact support, then (6.11) gives an

explicit formula for some u satisfying D(u) = η. As in the proof of Lemma 6.19, u is
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smooth and the formula (6.11) implies that u and its derivatives decay exponentially

as s→ ±∞, hence u ∈ W 1,p.

Next we prove the case when q < 2. We follow the argument outlined in [Sal97,

Exercise 2.5]. The idea is to prove an injectivity estimate for D : Lq → W−1,q, and

then upgrade this to a D : W 1,q → Lq injectivity estimate.

By definition, we set W−1,q = (W 1,p)∗ where p is Hölder dual to q, and

∥u∥−1,q = sup
∥φ∥1,p=1

⟨u, φ⟩.

Let D∗ = −∂s − A. By the above results (applied to −D∗) we conclude D∗ is an

isomorphism W 1,p → Lp. Thus

c−1 ∥u∥Lq ≤ sup
∥φ∥1,p=1

⟨u,D∗(φ)⟩ ≤ c ∥u∥Lq .

Observe that D∗ = −∂s−A is the formal adjoint to D, and hence (using distributional

definitions) we have:

∥u∥Lq ≤ c ∥D(u)∥−1,q .

In particular, if v ∈ W 1,q, then we can apply the above to u = ∂sv and conclude that

∥∂su∥Lq ≤ c ∥D(∂su)∥−1,q .

Now it is clear that, in the sense of distributions, we have D(∂su) = ∂sD(u). We

claim that

∥∂sD(u)∥−1,q ≤ c2 ∥D(u)∥Lq .

This is easy to see using the above variational definition of the W−1,q norm. Thus we

conclude that

∥∂su∥Lq ≤ c3 ∥D(u)∥Lq .

It is clear that W−1,q norm is less than the Lq norm, hence ∥u∥Lq ≤ c ∥D(u)∥Lq .

It then follows easily that ∥∂tu∥Lq ≤ c4 ∥D(u)∥Lq , and so we conclude the desired

injectivity estimate

∥u∥W 1,q ≤ c ∥D(u)∥Lq .

It follows easily that D(u) has closed range and hence it suffices to prove that the

image of D is dense. The arguments given in (6.11) and Lemma 6.19 show that we

can (explicitly) solve for compactly supported smooth functions and the solutions are

certainly of class W 1,q. Thus D is surjective. This completes the proof that D is an

isomorphism. □
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6.5. Proof of the Fredholm property

The main result of this section is the following:

Proposition 6.21. Let p > 1 and letD be an asymptotically non-degenerate Cauchy-

Riemann operator for the data (Σ,Γ±, E, F, C, [τ ]). Then the induced maps

D : W 1,p(E,F ) → Lp(Λ0,1 ⊗ E) and D∗ : W 1,p(E,F ) → Lp(Λ0,1 ⊗ E)

are Fredholm.

Similar arguments can be found in [Sal97, §2.3], [Sch95, Proposition 3.1.30], and

[Wen20, §4.5].

Proof. Let φρ be a cutoff function supported in the ends which equals 0 on Σ(ρ− 1)

and equals 1 on C(ρ). We can choose φρ so that its derivatives are bounded as ρ→ ∞.

We observe that

D(φρu) = ∂s(φρu)− A(φρu) + ∆(s)φρu,

where ∆(s) is a lower order term which converges to 0 as s → ±∞. We know that

∂ − A : W 1,p → Lp is an isomorphism and so ∥φρu∥W 1,p ≤ C ∥(∂s − A)(φρu)∥ for

some C. We estimate

∥φρu∥W 1,p ≤ C(∥D(φρu)∥Lp + ∥∆(s)φρu∥Lp)

≤ C(∥D(u)∥Lp + ∥∆(s)φρu∥Lp +
∥∥∂̄φρ · u

∥∥
Lp)

=⇒ ∥φρu∥Lp ≤ C ′(∥D(u)∥Lp + ∥u∥Lp(Σ(ρ))),

where we pick ρ large enough so that C |∆(s)| < 0.5 on the support of φρ. We also

use that ∂̄φρ is supported in Σ(ρ).

Next we combine the local elliptic estimates from 6.13 (to finitely many disks covering

Σ(ρ)) and conclude some constant C(ρ) so that

∥(1− φρ)u∥W 1,p ≤ C(ρ)(∥Du∥Lp + ∥u∥Lp(Σ(ρ+1))).

Combining our two estimates (and updating the constant) yields

(6.14) ∥u∥W 1,p ≤ C(∥Du∥Lp + ∥u∥Lp(Σ(ρ+1))).

Crucially, ρ does not depend on u. Since W 1,p → Lp(Σ(ρ+1)) (inclusion followed by

restriction) is a compact operator, we conclude from (6.14) that D is semi-Fredholm;

i.e., has closed image and finite dimensional kernel. See [MS12, Appendix A] for the

argument. The same argument shows that D∗ is semi-Fredholm.

Now suppose that D were not surjective. Since the image of D is closed, we can

apply the Hahn-Banach theorem to find w ∈ Lq(Λ0,1 ⊗ E) so that ⟨D(u), w⟩ = 0 for

all u ∈ W 1,p(E,F ) and w ̸= 0. But then w is smooth and takes boundary values in F ∗
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by the local regularity results. Moreover, in the ends we have (∂s+A)w = ∆∗w which

implies that w ∈ W 1,q(Λ0,1 ⊗ E,F ∗) (using the injectivity estimates for ∂s + A). We

conclude that w ∈ kerD∗. Since D∗ is semi-Fredholm, its kernel is finite dimensional.

This implies that cokerD is finite dimensional, and this completes the proof that D

is Fredholm. The same argument works for D∗. □



Chapter 7

Conley-Zehnder indices and kernel gluing

In this section our goal is to prove that the index behaves additively under a gluing

operation. See [Sch95, §3.2] for a similar argument.

Throughout this section we fix an asymptotic trivialization τ (i.e., fix τz for each

z ∈ Γ). Suppose that D is an asymptotic operator on (Σ,Γ±, E, F ) whose restriction

to the cylindrical ends Cz equalsD = ∂s−Az with respect to τz and where each Az is a

non-degenerate asymptotic operator. We have shown that D is Fredholm. Moreover,

it is clear that if D′ has the same asymptotic operators Az (in the same trivialization),

then we can homotope D to D′ while remaining in the space of Fredholm operators.

Then the index of D will equal the index of D′. Therefore, the index depends only

on the choice of non-degenerate asymptotic operators z 7→ Az (and (Σ,Γ, E, F ) of

course).

Introduce the reference operator Dal whose restrictions to the cylindrical ends equals

∂s+ i∂t+C with respect to the same trivialization τ . Here C is the matrix of complex

conjugation, i.e., in each end we have Dal(u) = ∂su + i∂tu + ū. The “al” stands for

“anti-linear.” The associated asymptotic operator is Aal = −i∂t−C. In other words,

Dal has all of its asymptotics equal to Aal.

In this section we will prove the following formula for index difference

ind(D)− ind(Dal) =
∑
z∈Γ+

µCZ(Az)−
∑
z∈Γ+

µCZ(Az),

where µCZ(Az) is the Conley-Zehnder index of Az, defined in §7.1 below. This formula

determines how the index depends on changing asymptotic operators (i.e., we can

compute ind(D1)− ind(D2) for any pair D1, D2). In §8 we will prove that ind(Dal) =

nX+ µτ
Mas(E,F ), which will complete the proof of the index formula.

7.1. Conley-Zehnder indices as Fredholm indices

First we need to show that Dal is actually Fredholm. This follows from:

Lemma 7.1. For σ > 0, the reference operator Aal,σ = −i∂t−σC is non-degenerate.

101
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Proof. We prove the strip case, leaving the (very similar) R/Z case to the reader.

Suppose u : [0, 1] → Cn takes real values when t = 0 and Aal,σ(u) = 0. A straightfor-

ward computation shows that

∂tuj = iσūj ⇐⇒ ∂t(xj + iyj) = σ(yj + ixj) =⇒ uj = xj(0)(cosh(σt) + i sinh(σt)).

In particular, since sinh(σt) > 0 for t > 0, we cannot also have uj(1) ∈ Rn. This

proves that Aal,σ is non-degenerate. □

Fix a non-degenerate asymptotic operator A. We will define a special Cauchy-

Riemann operator on the infinite strip/cylinder which will interpolate between ∂s−Aal

and ∂s−A. Let s 7→ β(s) be a [0, 1]-valued bump function which equals 0 on (−∞, 0]

and 1 on [1,∞), and define:

DCZ
A := ∂s − (1− β(s))Aal − β(s)A.

As a corollary to Lemma 7.1, the operator DCZ
A is Fredholm. We define the Conley-

Zehnder index of A as the Fredholm index of DCZ
A :

µCZ(A) := ind(DCZ
A ).

It is clear that µCZ(A) is independent of the choice of β used to define DCZ
A , since any

deformation of bump functions will keep DCZ
A in the space of Fredholm operators.

Remark 7.2. See [Flo89a, page 595] for an argument which explains why ind(DCZ
A )

is the spectral flow of the path of self-adjoint operators A(s) = (1−β(s))Aal+β(s)A.

Note that, since ∂s − Aal is an isomorphism W 1,p → Lp (Theorem 6.20) we conclude

that µCZ(A
al) = 0.

The main result of this section is:

Proposition 7.3. Let D,Dal be as above, i.e., for a fixed choice of trivialization τ

and for each z ∈ Γ the restrictions of D,Dal are

D = ∂s − Az, Dal = ∂s − Aal.

Note that the operators Dal and Az depend on the choice of triviliazation. We have

ind(D) = ind(Dal) +
∑
z∈Γ+

µCZ(Az)−
∑
z∈Γ−

µCZ(Az).

Proof. The proposition follows from a kernel gluing lemma for stabilized operators

(Lemma 7.4) proved in §7.3.1. □

The kernel gluing argument we will use is similar to the one used in [Sch95, §3.2].
See also [FH93, Proposition 9]. The rough idea is to deform D by a parameter ρ so
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that it equals a “glued” operator Dρ obtained from Dal by gluing on the asymptotic

operator DCZ
Az

for each z ∈ Γ, as suggested by in Figure 1.

Note that at negative ends we actually need to glue DCZ
Az

on “backwards.” For this

reason, we define:

DZC
A := ∂s − (1− β(s))A− β(s)Aal,

which interpolates from ∂s − A on the negative end to ∂s − Aal at the positive end.

Our kernel gluing argument will imply two things:

(i) ind(D) = ind(Dal) +
∑

z∈Γ+
ind(DCZ

A ) +
∑

z∈Γ−
ind(DZC

A ),

(ii) ind(DCZ
A ) + ind(DZC

A ) = 0 =⇒ ind(DZC
A ) = −µCZ(A).

These results together imply Proposition 7.3.

Before we perform the gluing argument we will explain how to stabilize the relevant

operators in order to make them surjective. This is the topic of the next subsection.

Dal

DZC
Az1

DZC
Az2

DCZ
Az0

∂s − Az1

∂s − Aal

∂s − Az2

∂s − Aal

∂s − Aal

∂s − Az0

glue (parameter = ρ)
Dρ

Figure 1. Gluing together operators Dal, DCZ
A , and backwards ver-

sions DZC
A to form Dρ, which can be deformed back to D through Fred-

holm operators. For large gluing parameter ρ, we will be able to relate
the kernel of Dρ to the kernels of DCZ

Az
, DZC

Az
, and Dal.

7.2. Stabilizing Cauchy-Riemann operators

Let D be a Cauchy-Riemann operator on (E,F,Σ,Γ, C, [t]) as usual.

As we have seen in §6.5, the operator D : W 1,p(E,F ) → Lp(Λ0,1 ⊗ E) has a finite

dimensional cokernel which can be identified with kerD∗ ⊂ W 1,p(Λ0,1 ⊗ E,F ∗).

Pick a basis c : Rd → ker(D∗), considered as a map c : Rd → Lp(Λ0,1 ⊗ E).

(7.1)
[
D c

]
: W 1,p(E,F )⊕ Rd → Lp(Λ0,1 ⊗ E).
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For our choice of c, this operator is surjective and its kernel is ker(D) ⊕ 0. Since

ker(D) is finite dimensional, the above operator has a right inverse. Since having a

right inverse is open in the norm topology, we can smoothly “cut-off” the cokernel

elements c1, · · · , cd so that they vanish outside of Σ(ρ0) for ρ0 sufficiently large (i.e.,

they vanish on the ends C(ρ0)).

This leads us to the following definition: a stabilized operator for D is any surjective

operator Dst of the form (7.1) where d = dim coker(D) and the cokernel elements

c1, · · · , cd are smooth and supported in Σ(ρ0) for some ρ0. The preceding discussion

shows that stabilized operators always exist.

By computing the Fredholm index of (7.1) when c = 0, we easily see that

ind(Dst) = ind(D) + d = ind(D) + dim coker(D) = dimker(D).

Since Dst is surjective, dim ker(Dst) = dimker(D), and hence

(7.2) kerDst = kerD ⊕ 0.

7.3. The kernel gluing argument

Let D be a Cauchy-Riemann operator as above. Fix a single positive puncture z with

asymptotic trivialization τ , and suppose that D is asymptotic to ∂s − A in the end

Cz.

By perturbing D through the space of Fredholm operators, we may suppose that on

Cz we have

D = ∂s − (1− β(s))Aal − β(s)A.

Here β is the bump function from before (i.e., 0 on (−∞, 0] and 1 on [1,∞)). This

local model is nice because it is the beginning of a family of Fredholm operators,

namely

Dρ = ∂s − (1− β(s− 3ρ))Aal − β(s− 3ρ)A.

We suppose that Dρ is fixed away from Cz. Consequently, the index of Dρ is constant

since it is always Fredholm (its asymptotics are fixed).

Introduce the operator D− = limρ→∞Dρ (pointwise limit). In other words, D− agrees

with D on the complement of Cz and equals ∂s − Aal on Cz.

Observe that the restriction of Dρ to Cz is a translated copy of

D+ := DCZ
A = ∂s − (1− β(s))Aal − β(s)A.

We can therefore think of Dρ as obtained by gluing D+ to the positive end of D−.

See Figure 2.
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∂s − Aal ∂s − A

interpolate
3ρ

s = 0

D− Dρ

∂s − Aal ∂s − A

DCZ
A = D+

s = 0

Figure 2. The relationship between D−, D
ρ and D+. We can think

of D− as the pointwise limit of Dρ. However, Dρ is always a translated
(and truncated) version of D+ on Cz.

To perform the actual gluing argument, we will need to stabilize the operators. Let

c = (c1, · · · , cd) be cokernel elements for D− and let γ = (γ1, · · · , γδ) be cokernel

elements for D+. We suppose that the cj are supported in Σ(ρ0) and similarly the γk

are supported where |s| < ρ0. These choices define stabilized operators:

D−
st : W

1,p(E,F )⊕ Rd → Lp(Λ1,0 ⊗ E) (ξ1, a) 7→ D−(ξ1) +
∑

ajcj,

D+
st : W

1,p(Cn,Rn)⊕ Rδ → Lp(Cn) (ξ2, b) 7→ D+(ξ2) +
∑

bkγk.

Then, for ρ > ρ0, we define:

(7.3)
Dρ

st : W
1,p(E,F )⊕ Rd ⊕ Rδ → Lp(Λ0,1 ⊗ E)

by (ξ, a, b) 7→ Dρ(ξ) +
∑

ajcj +
∑

bkγk(s− 3ρ).

Notice that Dρ
st is well-defined since γk(s− 3ρ) is supported in Cz(2ρ) for ρ > ρ0.

The following lemma establishes a relationship between D−
st, D

ρ
st and D

+
st.

Lemma 7.4 (Kernel gluing lemma). For ρ sufficiently large,

(i) Dρ
st is surjective,

(ii) dim kerDρ
st = dimkerD−

st + dimkerD+
st.

7.3.1. Consequences of the Kernel gluing lemma. Before we give the proof we explain

why Lemma 7.4 implies Proposition 7.3. First we observe that (i) and (ii) above

imply

ind(Dρ
st) = ind(D−

st) + ind(D+
st),

since all the operators are surjective. Using ind(Dρ
st) = ind(Dρ) + d + δ and similar

formulas for ind(D±
st), we conclude

(7.4) ind(D) = ind(Dρ) = ind(D−) + ind(D+).

Once we recall the definitions of D+, D− and how they compare with Dal and DCZ
A ,

we conclude Proposition 7.3 in the case when Γ+ = {z} and Γ− = ∅.
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More generally, we can apply Lemma 7.4 one time for each positive puncture and

conclude that Proposition 7.3 holds when Γ− = ∅.

There is an obvious variant of Lemma 7.4 in the case of a negative puncture z, where

we consider the deformation

Dρ = ∂s − (1− β(s+ 3ρ))A− β(s+ 3ρ)Aal,

defined for s ≤ 0. As above, we suppose Dρ is fixed on the complement of Cz. The

same gluing argument shows that ind(Dρ) agrees with the sum of the indices of the

operators

D+ = ∂s − Aal D− = ∂s − (1− β(s))A− β(s)Aal =: DZC
A .

Here D+ extends to Σ̇ (i.e., Dρ = D+ is fixed on the complement of Cz) while D
− is

defined on an infinite strip or cylinder.

By performing these deformations at all punctures (one at a time), we ultimately

conclude that

(7.5) ind(D) = ind(Dal) +
∑
z∈Γ+

ind(DCZ
A ) +

∑
z∈Γ−

ind(DZC
A ).

Finally, consider the following family of operators on the infinite cylinder or strip:

Dρ = ∂s − (1− β(s))A− β(s)(1− β(s− 3ρ))Aal − β(s)(β(s− 3ρ))A.

We can think of this as gluing DCZ
A to the positive end of DZC

A . Indeed, this fits into

the framework considered in Lemma 7.4, and so we conclude that

ind(Dρ) = ind(DZC
A ) + ind(DCZ

A ).

It is clear that if we let ρ become very negative, then Dρ agrees with ∂s − A, which

has Fredholm index 0 (by Theorem 6.20). Since the Fredholm index of Dρ is constant

as a function of ρ we must have

ind(DZC
A ) = −ind(DCZ

A ) = −µCZ(A).

This combined with (7.5) completes the proof of Proposition 7.3.

7.3.1.1. The proof of Lemma 7.4. The argument has two parts: first we prove Dρ
st is

uniformly surjective, and second, compute the dimension of its kernel. The first part

is used in the second part.

Proof. To prove that Dρ
st is surjective, we will attempt to solve the equation Dρ

st(ξ) =

η for some η ∈ Lp. Fix three bump functions bρ1, b
ρ
2, b

ρ
3, all supported in Cz by the
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formulas

bρ1(s) = β(s/ρ) bρ2(s) = β(1− s/ρ) bρ3(s) = β(2− s/ρ),

as shown in Figure 3. By picking ρ large enough, we may suppose that (c1, · · · , cd)
are supported where bρ2 = 1 and (γ1(s − 3ρ), · · · , γδ(s − 3ρ)) are supported where

bρ2 = 0. This assumption will simplify some calculations later on.

Let η ∈ Lp(E) be some section. Since D−
st has a bounded right inverse, we can find

ξ1 and c1 =
∑
ajcj so that

D−(ξ1) + c1 = bρ2η.

Moreover we can achieve this so that ∥(ξ1, c1)∥ = ∥c1∥ + ∥ξ1∥W 1,p is bounded by

C− ∥η∥Lp for a fixed constant C− (by fixing a bounded right inverse for D−
st). Here

∥c1∥ is any norm on Rd (which we fix throughout the proof).

ρ 2ρ 3ρbρ1 bρ2 bρ3

Figure 3. Three bump functions drawn with slight vertical offsets to
better show their behavior.

Because of bρ3c1 = c1 and bρ3b
ρ
2 = bρ2, we have

D−(bρ3ξ1) + c1 − bρ2η = D−(bρ3ξ1) + bρ3c1 − bρ3b
ρ
2η = ∂̄(bρ3)⊗ ξ1.

Since bρ3ξ1 is supported in the region where D− = Dρ, we can rewrite the above as

Dρ(bρ3ξ1) + c1 = bρ2η + (∂̄bρ3)⊗ ξ1.

Observe that ∆ = η − bρ2η is supported in the region where s ≥ ρ. Since D+
st is

surjective, we can find ξ′2 and c′2 =
∑
bkγk so that

D+(ξ′2) + c′2 = ∆(s+ 3ρ, t).

We can achieve this with ∥c′2∥+ ∥ξ′2∥W 1,p ≤ C+ ∥η∥Lp for a fixed constant C+.

Let ξ2(s, t) = ξ2(s − 3ρ, t) and c2(s, t) = c′2(s − 3ρ, t). Since bρ1∆ = ∆ and bρ1c2 = c2,

we conclude that

Dρ(bρ1ξ2) + c2 = ∆+ (∂̄bρ1)⊗ ξ2.

Consequently, we have

Dρ(bρ3ξ1 + bρ1ξ2) + c1 + c2 = η + (∂̄bρ3)⊗ ξ1 + (∂̄bρ1)⊗ ξ2.
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Observe that the derivatives of bρi are of order ρ
−1. We think of this as approximately

solving Dρ
st(b

ρ
3ξ1 + bρ1ξ2, c1, c2) = η. Indeed, we have just shown that for any η we can

find ξ, c1, c2 so that

(7.6) ∥ξ∥W 1,p + ∥c1∥+ ∥c2∥ ≤ C ∥η∥Lp and ∥Dρ
st(ξ, c1, c2)− η∥Lp ≤ Cρ−1 ∥η∥Lp ,

for constants C independent of ρ.

The equation (7.6) implies that Dρ
st is surjective for ρ large enough, as follows: pick

ρ so Cρ−1 < 1/2. By (7.6) with η := η −Dρ
st(ξ, c1, c2) we obtain ξ1, c11, c

1
2 so that∥∥Dρ

st(ξ
1, c11, c

1
2)− (η −Dρ

st(ξ, c1, c2))
∥∥
Lp ≤

1

4
∥η∥Lp ,

and ∥(ξ1, c11, c12)∥ ≤ C2−1 ∥η∥Lp . In other words, if we try to solve for the error arising

from our first attempt to solve for η, then Dρ
st(ξ, c1, c2) + Dρ

st(ξ
1, c11, c

1
2) is a better

approximation by a factor of 1/2 than our initial attempt.

By repeating this process, we can find a sequence ξn, cn1 , c
n
2 so that

∥(ξn, cn1 , cn2 )∥ ≤ C2−n ∥η∥Lp and
∥∥∥∑n

j=0D
ρ
st(ξ

j, cj1, c
j
2)− η

∥∥∥
Lp

≤ 2−n−1 ∥η∥Lp .

The above series then converges to an element in the preimage of η, as desired. This

completes the proof that Dρ
st is surjective for ρ sufficiently large. Moreover, we see

that Dρ
st actually has a right inverse which is bounded in norm by 2C. This uniformly

bounded right inverse will play a role later on.

Next we need to prove that dimkerDρ
st = dimkerD−

st + dimkerD+
st. First we will

prove that:

(7.7) dim kerDρ
st ≤ dimkerD−

st + dimkerD+
st.

Suppose that (ξ, c1, c2) lies in the kernel of Dρ
st. Using the same bump functions from

before, we compute:

D−(bρ2ξ) + c1 = Dρ(bρ2ξ) + c1 = bρ2(D
ρ(ξ) + c1 + c2) + ∂̄(bρ2)⊗ ξ = ∂̄(bρ2)⊗ ξ.

In particular, (bρ2ξ, c1) is close to lying in the kernel of D−
st (up to an error of size

ρ−1 ∥ξ∥). Indeed, using the bounded right inverse for D−
st we can estimate:∥∥(bρ2ξ, c1)− ker(D−

st)
∥∥ ≤ C ∥ξ∥ ρ−1.

On the other hand, we have:

0 = (1− bρ2)(D
ρ(ξ) + c1 + c2) = Dρ((1− bρ2)ξ) + c2 − ∂̄bρ2 ⊗ ξ,

so the translated element ((1− bρ2)ξ, c2)(s+ 3ρ, t) is close to the kernel of D+
st.
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We can encode these as a linear map Φ : kerDρ
st → (Lp × Rd)⊕ (Lp × Rδ):

Φ(ξ, c1, c2) =

[
(bρ2ξ, c1)

((1− bρ2)ξ, c2)(s+ 3ρ, t)

]
.

It is clear that Φ is uniformly injective (we simply add together its components to

recover ξ, c1, c2 – this defines a fixed left inverse). We will now estimate the rank of

Φ. By the preceding remarks, we have:∥∥Φ(ξ, c1, c2)− ker(D−
st)⊕ ker(D+

st)
∥∥ ≤ C ∥ξ∥ ρ−1.

Let Π be a projection onto ker(D−
st)⊕ ker(D+

st), so that:

∥(1− Π) ◦ Φ(ξ, c1, c2)∥ ≤ C ′ ∥ξ∥ ρ−1.

Thus Φ = Π ◦ Φ + (error of size ρ−1), where the error is measured in the operator

norm. Since Φ is uniformly injective, we conclude that Π ◦ Φ must also be injective

for ρ large enough. Hence Π◦Φ is an injection from ker(Dρ
st) into ker(D−

st)⊕ker(D+
st),

proving (7.7).

Finally we prove the reverse inequality:

(7.8) dim kerDρ
st ≥ dimker(D−

st) + dimker(D+
st).

The strategy will be “glue” together elements in the kernels ofD±
st and obtain elements

approximately in the kernel of Dρ
st, and then use the fact that Dρ

st has a (uniformly)

bounded right inverse (which we proved above) to show that we can deform these

approximate kernel elements into actual kernel elements.

So, let (ξ1, c1) ∈ ker(D−
st) and let (ξ′2, c

′
2) ∈ ker(D+

st). Let (ξ2, c2) = (ξ′2, c
′
2)(s − 3ρ, t).

Recall from §7.2 that we must have c1 = c2 = 0.

Then it is straightforward to check that:

(7.9) Dρ(βρ
2ξ1 + (1− βρ

2)ξ2) = (∂̄βρ
2)(ξ1 − ξ2).

Let Φ(ξ1, ξ
′
2) = βρ

2ξ1+(1−βρ
2)ξ2. First we show that Φ is uniformly injective. Indeed,

the injectivity estimates for ∂su− Au = 0 from §6.4.3 imply that:

(7.10)
∥ξ1∥ ≤ C ∥ξ1∥Σ(ρ) ≤ C ∥Φ(ξ1, ξ2)∥ ,

∥ξ′2∥ ≤ C ∥ξ′2∥(−ρ,∞)×I ≤ C ∥Φ(ξ1, ξ′2)∥ ,
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for a uniform constant C.1 In particular

(7.11) ∥ξ1∥+ ∥ξ′2∥ ≤ 2C ∥Φ(ξ1, ξ2)∥ .

Let B be a bounded right inverse for Dρ
st, and consider

Φ′ = Φ−B ◦Dρ
st ◦ Φ.

Because of (7.9), B ◦Dρ
st ◦Φ has operator norm bounded by ρ−1 (here we assume that

the operator norm of B is bounded as ρ→ ∞; the first part of our proof shows that

this can be achieved).

Then for ρ large enough, Φ′ is also injective as it is a small perturbation of an injective

operator (i.e., the estimate (7.11) will still hold, modulo increasing C slightly).

Thus Φ′ injects ker(D−)⊕ ker(D+) into ker(Dρ
st), establishing (7.8). This completes

the proof of the Lemma. □

1The idea is to write
ξ1 = (1− βρ

1 )ξ1 + βρ
1ξ1.

Then D−(βρ
1ξ1) = ∂̄βρ

1 ⊗ ξ1. Observe that βρ
1ξ1 is supported in the region where D− is translation

invariant. Thus we can apply the injectivity estimates and conclude that the W 1,p size of βρ
1ξ1 is

controlled by the Lp size of ξ1 on [0, ρ]× I. The constant C gets better (closer to 1) as ρ increases.
Similar considerations establish the second part of (7.10).



Chapter 8

The index formula for large anti-linear deformations

Fix a trivialization τ of (Σ,Γ, E, F, C, [τ ]), as above, and letDal be a Cauchy-Riemann

operator whose restriction to each end Cz is equal to ∂s−Aal (in the trivialization τ).

Our goal in this section is to compute the Fredholm index ind(Dal). The formula will

be in terms of the following invariants:

(i) The relative Euler characteristic X := X(Σ,Γ+,Γ−) is the weighted count of

zeros of a transverse vector field which equals ∂s in each end Cz and is everywhere

tangent to ∂Σ (the zeros are counted as explained in §6.2, see also Figure 1).

(ii) TheMaslov index µτ
Mas := µτ

Mas(E,F ) is the signed count of zeros of a transverse

section of (detE)⊗2 which (a) restricts to the canonical generator of (detF )⊗2 along

the boundary and (b) equals 1 in each end Cz (this last part uses τ). Notice that all

the zeros will necessarily be interior.

The main result in this section is:

Proposition 8.1. The Fredholm index of Dal : W 1,p(E,F ) → Lp(Λ1,0 ⊗ E) is

ind(Dal) = nX+ µτ
Mas,

where n is the complex rank of E.

The proof of Proposition 8.1 breaks into two parts. In §8.1 we reduce to the case when
E is a line bundle (so E = det(E) and F = det(F )). In §8.2 we prove Proposition

8.1 in the case when E is a line bundle by considering the σ → ∞ limiting behavior

of Dal + σBal where Bal is a special anti-linear deformation (we only deform the

lower order terms). This is the strategy introduced in [Tau96, §7] and generalized in

[Ger18, Chapter 3].

8.1. Reduction to the case of line bundles

In this section we assume that Proposition 8.1 is true for line bundles, and we deduce

it holds for all bundles. We will split (E,F ) into a direct sum

(E,F ) = (C,R)⊕ · · · ⊕ (C,R)︸ ︷︷ ︸
n−1 copies

⊕(det(E), det(F ))

111
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in a way compatible with the trivialization τ . In order to do the splitting, we fix a

Hermitian metric µ on (E,F ) extending the Hermitian metric in the ends Cz.

Consider the trivialization τ . This defines a unitary frame X1, · · · , Xn in the ends. If

n > 1, we can extend X1 over ∂Σ̇ as a non-zero section of F , which we may normalize

so |X1| = 1. Let E1 denote the µ-orthogonal complement of X1, and let F1 = E1∩F .
Note that F1 is n− 1 dimensional and is totally real for E1.

Notice that X2, · · · , Xn are all sections of (E1, F1) ⊂ (E,F ) in the ends. If n > 2

then we can extend X2 as a nonzero section of (E1, F1). We continue in this fashion

until we conclude that X1, · · · , Xn−1 extend as a global unitary frame in (E,F ) (in

the sense that they are mutually µ-orthogonal and all unit vectors).

Let En be the µ orthogonal complement to X1, · · · , Xn−1 and Fn = En ∩ F , and

notice that Xn trivializes (En, Fn) in the ends.

By construction, Dal is given by

Dal(
∑

ukXk) = (∂suk + i∂kuk + ūk)(ds− idt⊗Xk)

in the ends. In particular Dal splits in the ends. By perturbing Dal away from the

ends, we may suppose it splits everywhere. This means that if u takes values in

the line CXk (resp., En), then D
al(u) takes values in Λ0,1 ⊗ CXk (resp., Λ0,1 ⊗ En).

It follows that the induced operator splits as a diagonal matrix of Cauchy-Riemann

operators asymptotic to the one-dimensional version of ∂s − Aal:

Dal : [
n−1⊕
k=1

W 1,p(CXk,RXk)]⊕ (En, Fn) → [
n−1⊕
k=1

Lp(Λ0,1 ⊗ CXk)]⊕ Lp(Λ0,1 ⊗ En).

Let Dal
k be the kth factor in the above decomposition. The Fredholm index is additive

under diagonal decompositions. Since Proposition 8.1 applies toDal
k we conclude that:

ind(Dal) = [
n−1∑
k=1

ind(Dal
k )] + ind(Dal

n ) = nX+ µτ
Mas(En, Fn).

Finally, fix s a transverse section of E⊗2
n which restricts to the canonical generator of

F⊗2
n and which equals 1 ≃ X⊗2

n in the end. Locally write s = s1 ⊗ s2, and define

(8.1) s′ = (X1 ∧ · · · ∧Xn−1 ∧ s1)⊗ (X1 ∧ · · · ∧Xn−1 ∧ s2).

This does not depend on the decomposition s = s1 ⊗ s2 since En is a complex line

bundle.

Then s′ is a transverse section of det(E)⊗2 which restricts to the canonical generator

of det(F )⊗2. The signed count of zeros of s′ agrees with the count of zeros of s as they

locally differ by application of a fiber-wise complex linear isomorphism (namely, the
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map induced by (8.1)). Thus we conclude µτ
Mas(E,F ) = µτ

Mas(En, Fn). This completes

the proof of the reduction to the line bundle case.

8.2. Large anti-linear deformations

Let (E,F ) be a line bundle with asymptotic trivialization τ . As in the previous

section, we can consider τ as defining a non-vanishing section X in the ends which

takes boundary values in F . In other words (E,F ) = (CX,RX) in each end.

Our strategy will be to define a particular family of operators Dσ, σ > 0, whose

asymptotic form with respect to the trivialization τ is equal to ∂s + i∂t + σC. Since

we have shown Aal,σ = −i∂t − σC is non-degenerate for all σ > 0 (Lemma 7.1), we

conclude that Dσ is always Fredholm. Moreover, when σ = 1, Dσ = Dal. Therefore

ind(Dal) = lim
σ→∞

ind(Dσ).

Via another index gluing argument, we will be able to relate ind(Dσ) for large σ to

the weighted count of zeros of a certain section used to define Dσ, and ultimately

conclude

ind(Dσ) = X + µτ
Mas for σ ≫ 0.

This will complete the proof of Proposition 8.1.

8.2.1. Defining the family Dσ. We will now carefully define the family Dσ in such a

way which will facilitate the later analysis. Pick a Hermitian metric µ on all of E so

that |X| = 1. Consider the section M = X ⊗X of F⊗2 → ∂Cz.

We can extend this section as a non-vanishing section of F⊗2 → ∂Σ̇ as follows: on

any contractible open subset of ∂Σ̇, let M = Y ⊗Y where Y ∈ Γ(F ) satisfies |Y | = 1

using the metric µ. Since there is a unique unit vector lying in F up to ±1, we

conclude that these local descriptions of M agree on their overlaps. Clearly, in each

end, M = X ⊗ X. We should note that X may not extend over the boundary ∂Σ̇,

(but, as we have seen, M always does).

We extend M to the interior of Σ̇ as a section of E ⊗ E so that all of its zeros are

transverse. By the same considerations of the linearization of a vector field given in

§6.2, we can deform M near each zero ζ so that, for some D(1)-valued holomorphic

coordinate z centered at ζ, and some unitary frame Y for E, we have M = −zY ⊗ Y

or M = z̄Y ⊗ Y , depending on the sign of the determinant of the linearization of M

at ζ. By definition, µτ
Mas(E,F ) is the signed count of zeros of M . See Figure 1.
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It will be useful to recall that E ⊗E is complex linearly isomorphic to Hom0,1(E,E)

via the map Y ⊗X 7→ µ(−, Y )X, where µ is our chosen Hermitian metric. Let M∗

denote the image of M under this isomorphism (so M∗ is a section of Hom0,1(E,E)).

Next, we extend the vector field ∂s (defined in the ends) to all of Σ. We let V be a

vector field which (a) is everywhere tangent to ∂Σ̇, (b) equals ∂s in the ends, (c) has

non-degenerate zeros, and (d) its zeros are disjoint from the zeros of M . Unlike the

section M = X ⊗X, we expect V to have boundary zeros.

As explained in §6.2 we can slightly deform V (away from the ends), so that near

each interior zero p there is a holomorphic coordinate z = s+ it so that V = −z∂s or
V = z̄∂s, and near each boundary zero we have one of four possibilities V = ±z∂s,
V = ±z̄∂s.

M = −zY ⊗ Y

count = +1

M = z̄Y ⊗ Y

count = −1

Figure 1. After a slight deformation in a neighborhood of each zero,
we may assume the zeros ofM have coordinate representations as either
−z or z̄.

(+,+)

V = z∂s

count = +1

(+,−)

V = −z∂s

count = 0

(−,+)

V = z̄∂s

count = 0

(−,−)

V = −z̄∂s

count = −1

Figure 2. The four models for a boundary zero of V . The first sign
is from the linearization of V : Σ → TΣ and the second sign is from
the linearization of the restriction V : ∂Σ → T∂Σ.

By definition, the weighted count of the zeros of V is the relative Euler characteristic

X.

It will be important to fix a Hermitian metric µ on T Σ̇. We can do this so that |∂s| = 1

on all the coordinate charts introduced above (including the coordinate charts on the

ends Cz, of course).
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We are almost ready to define the operator Dσ. Two further simplifications we can

do are the following:

(i) Via a small deformation of V away from the ends and its zeros, we may suppose

that in the coordinate charts z = s+ it centered on the zeros of M , V takes the form

∂s, and

(ii) via a small deformation ofM away from the ends and its zeros, we may suppose

that M = Y ⊗ Y for a unitary frame (with Y |∂Σ ∈ F ) on the coordinate charts near

the zeros of V .

8.2.1.1. Summary of the setup. we have the following:

(a) Holomorphic coordinate charts z = s + it centered on each zero of M and V .

Boundary holomorphic coordinate charts are valued in D(1) ∩ H̄.

(b) Unitary metrics on E and T Σ̇ extending the metrics in the ends. Moreover we

fix unitary sections Y for (E,F ) defined on the domains of the coordinate charts from

(a), and also suppose that |∂s| = 1 in each chart.

(c) Near each zero of M , V = ∂s and M equals −zY ⊗ Y or z̄Y ⊗ Y ,

(d) Near each interior zero of V , M = Y ⊗ Y and V equals −z∂s or z̄∂s,

(e) Near each boundary zero of V , M = Y ⊗ Y and V equals ±z∂s or ±z̄∂s, (the
± signs are independent).

Fix D0 to be a Cauchy-Riemann operator on (E,F ) which equals ∂s + i∂t in C (with

respect to τ) and equals ∂s + i∂t with on the local trivializations induced by (a) and

(b) above. This operator D0 is not Fredholm, since its asymptotics are degenerate.

We will perturb D0 by the following lower order term

ξ ∈ Γ(E) 7→ B(ξ) = µ(−, V )⊗M∗(ξ) ∈ Γ(Λ0,1 ⊗ E).

Note that since M∗ is a section of Hom0,1(E,E), ξ 7→ B(ξ) is anti-linear. We define

Dσ = D0 + σB.

Before we proceed, let us verify that Dσ has the correct “al” asymptotics for σ > 0.

In any of the asymptotic coordinate charts, we have M∗ = µ(−, X)X and V = ∂s

hence M∗(uX) = ūX and

Dσ(uX) = (∂su+ i∂tu)(ds+ idt)⊗X + σūµ(−, ∂s)⊗X.

= (∂su+ i∂tu+ σū)(ds+ idt)⊗X,
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where we have used the fact that µ(−, ∂s) = ds− idt in the ends (indeed, this holds

in all of our coordinate charts by the assumption that |∂s| = 1). Thus the local

representation of Dσ indeed equals ∂s + i∂t + σC, as desired.

As explained at the start of this section, this implies that the Fredholm index of Dσ

is constant for σ > 0. Our task therefore reduces to the following lemma, which we

will prove by deforming σ → +∞:

Lemma 8.2. The Fredholm index of Dσ is equal

ind(Dσ) = X + µτ
Mas.

This lemma will complete the proof of Proposition 8.1.

8.2.2. Computing the local coordinate representations of Dσ. In this section we will

derive various formulas for Dσ in coordinate charts. We have just shown that

(8.2) in the ends Cz we have: Dσ = ∂s + i∂t + σC.

Near the zeros of V and M , we compute the coordinate representation of Dσ using

the s+ it coordinate and the frame Y .

On a chart centered on a zero of M , we have M∗ = αµ(−, Y )Y , where α = −z or

α = z̄, and V = ∂s. Similarly, near an interior zero of V , we have M∗ = µ(−, Y )Y

and V = α∂s. In either case, we conclude:

(8.3)
at interior positive zeros: Dσ(u) = ∂su+ i∂tu− σzū,

at interior negative zeros: Dσ(u) = ∂su+ i∂tu+ σz̄ū.

Next we compute the coordinate representation of Dσ near the boundary zeros, which

we partition by their pair of signs (±,±) as in Figure 2:

(8.4)
at (+,±) type zeros: Dσ(u) = ∂su+ i∂tu± σzū,

at (−,±) type zeros: Dσ(u) = ∂su+ i∂tu± σz̄ū.

8.3. Bochner-Weitzenböck estimates and a linear compactness result

Following [Tau96, §7] and [Wen20, Chapter 5], we show that Dσ = D0+σB satisfies

a “Bochner-Weitzenböck” type estimate which will imply that kernel elements ξ ∈
kerDσ and cokernel elements η ∈ kerDσ,∗ concentrate near zeros of B. The key step

is the following L2 estimate:

Lemma 8.3 (Bochner-Weitzenböck estimates). Let ξ ∈ W 1,2(E,F ), then

∥D0ξ∥2L2 + σ2 ∥B(ξ)∥2L2 ≤ ∥Dσξ∥2L2 + σ ∥ξ∥L2 ∥D∗
0(B(ξ)) +B∗(D0(ξ))∥L2 .
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Moreover, ξ 7→ D∗
0(B(ξ))+B∗(D0(ξ)) is a zeroth order operator (which is translation

invariant in the ends). Similarly, if η ∈ W 1,2(Λ1,0 ⊗ E,F ∗) then

∥D∗
0η∥

2
L2 + σ2 ∥B∗η∥2L2 ≤ ∥Dσ,∗η∥2L2 + σ ∥ξ∥L2 ∥D0(B

∗(η)) +B(D∗
0(η))∥L2 .

and η 7→ D0(B
∗(η)) + B(D∗

0(η)) is also a zeroth order operator (also translation

invariant in the ends). We therefore conclude a constant C = C(D0, B) so that for

all ξ, η as above we have

(8.5)
∥Bξ∥2L2 ≤ σ−2 ∥Dσξ∥2L2 + Cσ−1 ∥ξ∥2L2 ,

∥B∗(η)∥2L2 ≤ σ−2 ∥Dσ,∗η∥2L2 + Cσ−1 ∥η∥2L2 .

In particular, if Dσnξn and ξn remain bounded in L2 and σn → ∞, then Bξn must

converge to zero in L2. This forces the mass of ξn to concentrate near the zeros of B.

Proof. Thanks to Proposition 6.14 and the subsequent remarks, it suffices to consider

the case when ξ is smooth and takes values in F along the boundary.

Let ⟨−,−⟩ denote the L2 inner product. Naively, the estimate is proved by the

following computation

(8.6)

∥Dσξ∥2 = ⟨ξ,Dσ,∗Dσξ⟩

= ⟨ξ,D∗
0D0ξ⟩+ σ⟨ξ,D∗

0(B(ξ)) +B∗(D0(ξ))⟩+ σ2 ∥B(ξ)∥2

= ∥D0ξ∥2 + σ⟨ξ,D∗
0(B(ξ)) +B∗(D0(ξ))⟩+ σ2 ∥B(ξ)∥2 .

Rearranging easily yields the desired result. Unfortunately, we cannot expect to be

able to apply the formal adjoint property in the first and third equality unless Dσξ

and D0ξ take boundary values in F ∗. One way to circumvent this issue would to be

assume that D0ξ takes boundary values in F ∗. The lower order term B has been

constructed so that Dσξ would automatically also take boundary values in F ∗. It

seems plausible that smooth sections ξ which take boundary values in F and for

which D0ξ takes boundary values in F ∗ are dense in W 1,2(E,F ).1 However, we will

not pursue this density approach here. Rather, we prefer to make the observation

that we have applied the formal adjoint property twice, once for Dσ and once for D0,

and the failures of formal adjointness will cancel each other out.

Indeed, Dσ−D0 is a zeroth order operator whose formal adjoint is Dσ,∗−D∗
0. Formal

adjoints for zeroth order operators do not require any integration by parts, hence

⟨Dσξ −D0ξ,D
σξ +D0ξ⟩ = ⟨ξ, (Dσ,∗ −D∗

0)(D
σ +D0)ξ⟩.

1This is suggested by the following observation: Locally write ξ = uY . The approximation result
Proposition 6.14 shows that u can be approximated in W 1,2 by un = Φn ∗ E(u). By picking Φn

appropriately, these approximations satisfy (∂s + i∂t)un ∈ R. In general we would require that we
can approximate u by smooth functions un taking real values on the boundary and also satisfying
∂̄un + αun + βūn ∈ R, where α, β are arbitrary complex valued functions.
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This simplifies to

∥Dσξ∥2 − ∥D0ξ∥2 = ⟨ξ,Dσ,∗Dσξ⟩ − ⟨ξ,D0,∗D0ξ⟩+ ⟨ξ, (D∗
0D

σ −Dσ,∗D0)ξ⟩.

Clearly D∗
0D

σ −Dσ,∗D0 = σ(D∗
0B −B∗D0), and hence

⟨ξ, (D∗
0D

σ −Dσ,∗D0)ξ⟩ = ⟨ξ,D∗
0σBξ⟩ − ⟨ξ, σB∗D0ξ⟩

= ⟨D0ξ, σBξ⟩ − ⟨σBξ,D0ξ⟩ = 0,

where we have used the fact that Bξ takes values in F ∗ (which follows easily from

our construction of B and the fact ξ takes values in F ). Thus

∥Dσξ∥2 − ⟨ξ,Dσ,∗Dσξ⟩ = ∥D0ξ∥2 − ⟨ξ,D0,∗D0ξ⟩.

This implies that the conclusion of (8.6) holds, (even if the individual steps do not

hold). The first estimate from the statement of the Lemma then follows easily. The

second estimate is proved in the same way.

To show that L(ξ) = B∗D0(ξ)+D
∗
0B(ξ) is a zeroth order operator, we will show that

L(fξ) = fL(ξ) for all real-valued functions f and all sections ξ (this implies that L

is described as a tensor). It suffices to prove this in the case when f is supported in

a coordinate chart z = s+ it with frame Y .

We digress for a moment to derive formulas for D∗
0 and B∗ on this coordinate chart.

Write ξ = uY and B = φ(ds − idt)µ(−, Y )Y . We can assume that Y is a unitary

frame, i.e., |Y | = 1, but we do not assume that |∂s| = 1.

Let η be an arbitrary smooth section of Λ1,0 ⊗ E taking values in F ∗ along the

boundary. Write η = w(ds− idt)⊗ Y . Then we easily compute (similarly to how we

argued in §6.3.6):

(8.7) B(ξ) = ūφ(ds− idt)⊗ Y =⇒ Reµ(B(ξ), η) = Reuφ̄w |ds− idt|2 .

Therefore we must have B∗(η) = φ |ds− idt|2 w̄Y , since this choice yields the desired

pointwise relationship:

Reµ(ξ, B∗(η)) = Re ūw̄φ |ds− idt|2 = Reµ(B(ξ), η).

Recall that in (6.6) we have computed a formula for D∗
0:

|ds− idt|−2D∗
0(w(ds− idt)⊗ Y ) = (−∂sw + i∂tw + Sw)Y,

for some matrix valued function S. The important part is that the leading order part

is −∂ = −∂s + i∂t. We then combine (8.7) with the above formula for D∗
0 to obtain

(8.8) D∗
0(B(fξ)) = −∂f · φ |ds− idt|2 ūY + fD∗

0(B(ξ)).



8.3. BOCHNER-WEITZENBÖCK ESTIMATES AND A LINEAR COMPACTNESS RESULT 119

This computes half of L(fξ). For the other half, we use the defining property of

Cauchy-Riemann operators to conclude

(8.9) B∗(D0(fξ)) = B∗(∂̄f · (ds− idt)⊗ ξ) + fB∗(D0(ξ)),

where ∂̄ = ∂s + i∂t. Recall that we assume f is real-valued. Then our formula for

B∗(η) with η = ∂̄f · (ds− idt)⊗ ξ = ∂̄f · u · (ds− idt)⊗ Y implies

B∗(∂̄f · (ds− dt)⊗ ξ) = ¯̄f∂φ |ds− idt|2 ūY = ∂f · φ |ds− idt|2 ūY.

Adding together (8.8) and (8.9), the ±∂f ·φ |ds− idt|2 ūY terms cancel and we obtain

L(fξ) = D∗
0(B(fξ)) +B∗(D0(fξ)) = f [D∗

0(B(ξ)) +B∗(D0(ξ))] = fL(ξ),

as desired. A similar argument shows that BD∗
0+D0B

∗ is also a zeroth order operator.

This completes the proof. □

8.3.1. Local Bochner-Weitzenböck estimates for sections supported near the zeros. In

this section we will do a case-by-case analysis of the operator Dσ near the zeros.

See [Wen20, §5.6] for similar results. To simplify the calculations ahead, let’s write

∂̄ = ∂s + i∂t. In the next section we will explain how to rescale Dσ = ∂̄ ± σα(z)C to

D1 = ∂̄ ± α(z)C. In this section we will focus only on the rescaled operator D1.

There are four possibilities for D1, namely ∂̄±zC and ∂̄± z̄C. We have the following

estimates for these operators:

Lemma 8.4 (Local Bochner-Weitzenböck). Let v ∈ W 1,2(C,C) or v ∈ W 1,2(H̄,C,R).
Then we have the following estimates:∥∥∂̄v∥∥2

L2 + ∥zv∥2L2 ≤
∥∥∂̄v ± zv̄

∥∥2

L2 + 2 ∥v∥2L2∥∥∂̄v∥∥2

L2 + ∥zv∥2L2 ≤
∥∥∂̄v ± z̄v̄

∥∥2

L2 .

Proof. Using the smooth approximation result Proposition 6.14, we may suppose

that v is smooth, compactly supported, and takes real values along the boundary.

To prove the inequalities, we will need to integrate by parts two times. Let us focus

on the first estimate. We start by computing:

(−∂ ± zC)(∂̄ ± zC)v = −∂∂̄v ± z∂̄v −±z∂v̄ −±2v̄ + |z|2 v.

Using the fact that ∂̄v = ∂v̄ we conclude that two terms cancel and we are left with

(8.10) (−∂ ± zC)(∂̄ ± zC)v = −∂∂̄v ∓ 2v̄ + |z|2 v.

The naive idea is to multiply both sides by Reµ0(v,−), integrate, and use the formal

adjoint property for −∂ ± zC = (∂̄ ± zC)∗ and −∂ = ∂̄∗. This naive argument would

require that ∂̄v and ∂̄v ± zv̄ take real values along the boundary, which we do not
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assume. However, as in the previous section, the fact that we integrate by parts twice

will imply that the failures of formal adjointness will cancel out.

Indeed, we compute

Re

∫
µ0(v,−∂∂̄v)dsdt = Re

∫
µ0(v,−∂s∂̄v)dsdt+Re

∫
µ0(v, i∂t∂̄v)dsdt.

It is clear that the can integrate by parts with respect to ∂s, and conclude

Re

∫
µ0(v,−∂∂̄v)dsdt = Re

∫
µ0(∂sv, ∂̄v)dsdt+Re

∫
µ0(v, i∂t∂̄v)dsdt.

We can also integrate by parts with respect to ∂t, at the expense of a boundary

integral term, and (after some simplification) end up with:

Re

∫
µ0(v,−∂∂̄v)dsdt = Re

∫
µ0(∂̄v, ∂̄v)dsdt− Re

∫
R
µ0(v, i∂̄v)dsdt.

We do the same computation with ∂̄ replaced by D = ∂̄ ± zC, and conclude that

Re

∫
µ0(v,D

∗Dv)dsdt = Re

∫
µ0(Dv,Dv)dsdt− Re

∫
R
µ0(v, iDv)dsdt.

Finally, we observe that

Re

∫
R
µ0(v, iDv)dsdt = Re

∫
R
µ0(v, i∂̄v)dsdt± Re

∫
R
µ0(v, iCzv̄)dsdt

= Re

∫
R
µ0(v, i∂̄v)dsdt,

where we have used the fact that Czv̄ takes real values along the boundary. Therefore

Re

∫
µ0(v,D

∗Dv)dsdt− ∥Dv∥2L2 = Re

∫
µ0(v, ∂̄

∗∂̄v)dsdt−
∥∥∂̄v∥∥2

L2 .

Applying Reµ0(v,−) to (8.10) and integrating implies∥∥∂̄v ± zv̄
∥∥2

L2 =
∥∥∂̄v∥∥2

L2 ∓ 2Re

∫
µ0(v, v̄) + ∥zv∥2L2 .

We rearrange and estimate to conclude that∥∥∂̄v∥∥2

L2 + ∥zv∥2L2 ≤
∥∥∂̄v ± zv̄

∥∥2

L2 + 2 ∥v∥2L2 ,

as desired. The second estimate in the statement of the lemma (with D = ∂̄± z̄C) is

proved in the same manner. □

8.3.2. Classifying the kernels of D1 (six cases). The second estimate in Lemma 8.4

implies that ∂̄v ± z̄v̄ = 0 has no non-zero solutions – this takes care of three of the

six kinds of operators.
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Our next lemma shows that ∂̄v±zv̄ = 0 has either a one-dimensional space of solutions

or a zero-dimensional space of solutions.

Lemma 8.5. Suppose that v : C → C is in L2, then

∂̄v − zv̄ = 0 ⇐⇒ v = ci exp(−1

2
|z|2) for c ∈ R,

∂̄v + zv̄ = 0 ⇐⇒ v = c exp(−1

2
|z|2) for c ∈ R.

On the other hand if v : H̄ → C is in L2 and takes real values along the boundary,

then
∂̄v − zv̄ = 0 ⇐⇒ v = 0

∂̄v + zv̄ = 0 ⇐⇒ v = c exp(−1

2
|z|2) for c ∈ R.

Morally, this says that positive interior zeros and (+,+) zeros contribute one dimen-

sion to the kernel, but (+,−) zeros do not contribute to the kernel.

Proof. Observe that if we set v′ = iv, then

∂sv
′ + i∂tv

′ − zv̄′ = i(∂sv + i∂tv + zv̄),

and hence it suffices to study the equation ∂̄v − zv̄ = 0. Following [Wen20, Propo-

sition 5.22], we prove that the real part of v must vanish identically.

The second estimate from Lemma 8.4 implies that ∂̄v ∈ L2 and zv ∈ L2 (proof: both∥∥∂̄(ρ(zδ)v)∥∥
L2 and ∥zρ(zδ)v∥L2 remain bounded as δ → 0). The L2 elliptic estimates

then imply that v ∈ W 1,2.

Let y = Re(v). Since −∆v + 2v̄ + |z|2 v = 0, we have

0 = −∆y + (2 + |z|2)y.

Apply Reµ0(ρ(zδ)y,−) to both sides, and integrate by parts to conclude

0 =

∫
ρ(zδ)

∣∣∂̄y∣∣2 dsdt+Re

∫
µ0(∂̄(ρ(zδ)) · y, ∂̄y)dsdt+

∫
ρ(zδ)(2 + |z|2) |y|2 dsdt.

When we integrate by parts, we use ∂ty = 0 (which holds in our case). We can now

take the limit δ → 0, since we have verified that ∂̄y, zy ∈ L2, and conclude that

0 =
∥∥∂̄y∥∥2

L2 +
∥∥(2 + |z|2)1/2y

∥∥2

L2 =⇒ y = 0,

using ∂̄(ρ(zδ)) = O(δ). It follows that any L2 solution of ∂̄v − zv̄ = 0 as in the

statement of the lemma is purely imaginary (and hence vanishes along the boundary,

if the boundary exists).

We now observe that v = i exp(−1
2
|z|2) is certainly in L2 and solves ∂̄v − zv̄ = 0.

Clearly any other solution v′ will be v′ = gv for some holomorphic g; moreover, by
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what we have shown above, g must be real. There are no non-constant holomorphic

functions defined on C or H which take only real values (the rank of the derivative

matrix would be always 0). Thus g = c must be a real number.

In the case when v is defined on H̄, the only possibility is c = 0, since otherwise v

would take non-zero imaginary values along the boundary.

Finally, we return to the second equation from the statement, ∂sv+ i∂tv+zv̄ = 0. We

have shown that this solution is conjugate to the first equation under multiplication

by i. Therefore all solutions on the disk or half-plane are given by v = c exp(−1
2
|z|2)

for some real c. In this case we can have non-zero c when v is defined on H̄.

This completes the proof. □

8.3.3. The formal adjoint near the zeros. Since we chose our metric so that |∂s| = 1 in

all of the special coordinate charts centered at the zeros of B, we can easily compute

the coordinate representations of Dσ,∗:

Dσ = ∂̄ ± σzC =⇒ Dσ,∗(u) = −∂ ± σzC

Dσ = ∂̄ ± σz̄C =⇒ Dσ,∗(u) = −∂ ± σz̄C.

Let Dσ,† = −C ◦Dσ,∗ ◦ C. The above yields:

Dσ = ∂̄ ± σzC =⇒ Dσ,†(u) = ∂̄ ∓ σz̄C

Dσ = ∂̄ ± σz̄C =⇒ Dσ,†(u) = ∂̄ ∓ σzC.

Thus we can think of Dσ 7→ Dσ,† as defining a “duality involution” on the set of six

local model equations. This is illustrated in Figure 3.

To explain the labeling scheme used in the figure, we partition the zero set of B,

denoted Z, into six kinds of zeros:

Z = Z+ ∪ Z− ∪ Z++ ∪ Z+− ∪ Z−+ ∪ Z−−,

where Z± are interior positive/negative zeros, and Z±± are boundary zeros (let’s agree

for this notation that the two ± signs are independent). The convention for assigning

labels is via the linearization: the first sign is the linearization of B allowing arbitrary

deformations, and the second sign is for the linearization only allowing deformations

along the boundary. The local form of Dσ near a zero ζ and the corresponding count

is summarized in Figure 3.

It follows from the construction in §8.2.1 that the sum of the counts of all the zeros

in Z is equal to X + µτ
Mas.
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∂̄ + σzC

count = +1

Z++

∂̄ − σzC

count = 0

Z+−

∂̄ − σzC

count = +1

Z+

∂̄ − σz̄C

count = −1

Z−−

∂̄ + σz̄C

count = 0

Z−+

∂̄ + σz̄C

count = −1

Z−

Figure 3. The six kinds of zeros and the coordinate representation of
Dσ in each chart. Two zeros are in the same box if the operators are
dual in the sense defined above.

Applying Lemmas 8.4 and 8.5 to D1,† yields the following result for D1,∗.

Corollary 8.6. Suppose v : C → C is in L2. Then

−∂v − zv̄ = 0 ⇐⇒ v = 0

−∂v + z̄v̄ = 0 ⇐⇒ v = ic exp(−1

2
|z|2) for some c ∈ R.

Now suppose that v : H̄ → C is in L2 and takes real values along the boundary. Then

−∂v ± zv̄ = 0 ⇐⇒ v = 0

−∂v + z̄v̄ = 0 ⇐⇒ v = 0

−∂v − z̄v̄ = 0 ⇐⇒ v = c exp(−1

2
|z|2) for some c ∈ R.

Heuristically, this says that the zeros with count −1 in Figure 3 contribute a one-

dimensional subspace to the kernel of the formal adjoint Dσ,∗ (and all other zeros

contribute nothing).

8.4. Linear compactness and a stabilization of Dρ

In this section we will relate the kernel and cokernel of Dρ to the kernels and cokernels

of the local models D1. We begin with an explanation of the rescaling scheme we use.
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8.4.1. Modified rescaling maps. Suppose that ζ is a zero and let z be the special

coordinate chart centered at ζ. By convention, z is either H̄ ∩D(1) or D(1) valued.

Let ρ be a bump function supported in D(1) which is 1 on D(1/2).

Let Φσ : L2(C,C) → L2(Σ̇,C) be the modified rescaling map:

Φσ(v) = ρ · σ1/2v(σ1/2z).

Observe that ∥Φσ(v)∥L2 ≤ ∥v∥L2 = limσ→∞ ∥Φσ(v)∥L2 . Dually, we let Πσ = Φ∗
σ be

the adjoint. It is easy to obtain the following explicit formula for Πσ:

Πσ(u)(z) = σ−1/2ρ(σ−1/2z)u(σ−1/2z).

The relevance of Πσ,Φσ is how they interact with Dσ. Suppose that Dσ = ∂̄+σα(z)C

and let D1 = ∂̄ + α(z)C (where α = ±z,±z̄). Then we easily compute

Dσ ◦ Φσ(v) = σ1/2Φσ(D
1(v)) + (∂̄ρ)σ1/2v(σ1/2z).

Recall that the L2 norm of λv(λz) is constant as function of λ. A similar computation

can be done using Πσ, and we conclude:

(8.11)

∥∥Dσ(Φσ(v))− σ1/2Φσ(D
1(v))

∥∥
L2 ≤ c(ρ) ∥v∥L2(D(σ) D(σ/2)) ,∥∥σ1/2D1(Πσ(u))− Πσ(D

σ(u))
∥∥
L2 ≤ c(ρ) ∥u∥L2(D(1) D(1/2)) .

We similarly note the behavior of Dσ,∗ under Φσ and Πσ:

(8.12)

∥∥Dσ,∗(Φσ(v))− σ1/2Φσ(D
1,∗(v))

∥∥
L2 ≤ c(ρ) ∥v∥L2(D(σ) D(σ/2)) ,∥∥σ1/2D1,∗(Πσ(u))− Πσ(D

σ,∗(u))
∥∥
L2 ≤ c(ρ) ∥u∥L2(D(1) D(1/2)) .

These estimates will be important later on. They essentially say that a uniform bound

on ∥Dσ(u)∥L2 and ∥u∥L2 implies that ∥D1(v)∥L2 = O(σ−1/2) where v = Πσ(u).

ζ ∈ Z±ζ ∈ Z±±

Figure 4. Rescaling sections near the zeros of B. The map Φσ takes
a section on the large domain and compresses it to fit inside the small
domain (and then cuts it off by ρ). The map Πσ does the opposite, it
first cuts off by ρ and then expands the domain of the section. The
factors have been chosen so that ∥Φσ(v)∥L2 =

∥∥ρ(σ−1/2z)v
∥∥
L2 .
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8.4.2. A linear compactness result. In this section we will prove a compactness theo-

rem which concerns sequences ξn with ∥Dσn(ξn)∥ < C and σn → ∞. To set the stage,

let zζ be the chosen holomorphic coordinate centered on the zero ζ (as above), and

recall the modified rescaling maps:

Φσ,ζ(v) = ρ · σ1/2v(σ1/2zζ), and Πσ,ζ(u) = σ−1/2ρ(σ−1/2zζ)u(σ
−1/2zζ).

Let Πσ = ⊕ζ∈ZΠσ,ζ be considered as a map

Πσ : L2(Σ̇, E) →
⊕
ζ∈Z±

L2(C,C)⊕
⊕

ζ∈Z±±

L2(H̄,C) = H.

The same formula also defines Πσ on L2(Σ̇,Λ1,0 ⊗ E). We can think of H as the

Hilbert space of L2 sections on a disjoint union of finitely many copies of C and H̄.

We define an operator D1 : H → H (with dense domain) whose restriction to each

factor equals the choice of ∂̄ ± α(z)C for α(z) = z, z̄ given by Figure 3. We similarly

define D1,∗ : H → H where the local form is −∂ ± α(z)C, as appropriate.

The results of Lemmas 8.4, 8.5 and Corollary 8.6 give a complete classification of the

elements in kerD1 and kerD1,∗. See (8.15) in the next section for a summary of the

kernel of D1 and D1,∗.

We let Rσ(ξ) = ξ −
∑

ζ∈Z ρ(zζ)ξ which we think of as the “remainder” after cutting

off. It follows easily from the definitions that

(8.13)
Dσ(Rσ(ξ)) = ∂̄ρ⊗ ξ +Rσ(D

σ(ξ)).

∥ξ∥L2 ≤ ∥Rσ(ξ)∥L2 + ∥Πσ(ξ)∥L2 ≤ 2 ∥ξ∥L2 .

Proposition 8.7 (Linear compactness). Let ξn ∈ W 1,2(E,F ) be a sequence so that

∥ξn∥L2 + ∥Dσn(ξn)∥L2 remains bounded for some sequence σn → ∞. Then

(a) ∥Rσn(ξn)∥L2 → 0.

(b) After passing to a subsequence, Πσn(ξn) → k in L2 for some element k ∈ kerD1.

The same holds with (ξn, E, F,D
σn , D1,k) replaced by (ηn,Λ

0,1⊗E,F ∗, Dσn,∗, D1,∗, c).

Proof. We will only prove the ξn case, leaving the ηn case to the reader. To avoid

too much clutter, we suppress some notation and write σ := σn, ξn := ξ. Keep in

mind that ρ is a fixed bump function.

Let’s begin the proof. Using (8.13) together with the Bochner-Weitzenböck estimate

(8.5) implies that

∥BRσ(ξ)∥2L2 ≤ σ−2
∥∥∂̄ρ∥∥2

C0 ∥ξ∥
2
L2 + σ−2 ∥Dσ(ξ)∥2L2 + Cσ−1 ∥ξ∥2L2 .
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However, Rσ(ξ) is supported on Σ̇ D(ζ1, 1/2) D(ζ2, 1/2) · · · and it follows that

|B| > b > 0 for some fixed constant b on the support of Rσ(ξ). Therefore we conclude

that

∥Rσ(ξ)∥2L2 ≤ b−1((Cσ−1 + cρσ
−2) ∥ξ∥2L2 + σ−2 ∥Dσ(ξ)∥2L2) = O(σ−1).

This proves part (a).

For part (b), we use (8.11) to conclude∥∥D1(Πσ(ξ))
∥∥ ≤ σ−1/2(∥Dσ(ξ))∥L2 + cρ ∥ξ∥L2) = O(σ−1/2).

Let vn = Πσ(ξ). Then ∥vn∥L2 is bounded and ∥D1(vn)∥ = O(σ
−1/2
n ). We will now use

the local Bochner Weitzenböck estimates (Lemma 8.4) to conclude that we have

(8.14)
∥vn∥L2 +

∥∥∂̄vn∥∥L2 + ∥zvn∥L2 = O(1)∥∥D1(vn)
∥∥
L2 = O(σ−1/2

n ).

The first estimate above is actually enough to imply that a subsequence of vn con-

verges to some limit v∞ in L2; we will explain this step momentarily. The second

estimate will imply that D1(v∞) = 0. This will complete the proof.

Before we move on, note that the L2 elliptic estimates for ∂̄ and the first estimate

above implies that vn is uniformly bounded in W 1,2.

We can phrase the next part of our argument rather generally. If we let

W = {v ∈ H and ∥v∥W 1,2 + ∥zv∥L2 ≤ C} ,

(with the obvious induced norm) then the inclusionW → H is compact; we will prove

this below. To see how it applies to our problem, observe that the L2 estimates for

∂̄ and the first part of (8.14) imply that ∥vn∥W 1,2 + ∥zvn∥L2 is bounded, and hence

vn is bounded in W . Therefore, after passing to a subsequence, vn converges to some

limit v∞ in L2. If φ is any test function (taking real values along the boundary) then

we have

⟨D1,∗φ, v∞⟩ = lim⟨D1,∗φ, vn⟩ → 0,

and hence D1v = 0 weakly. By our elliptic regularity results v is smooth, takes real

values along the boundary, and D1v = 0 holds pointwise, as desired. We can then set

k = v∞ to complete the proof.

It remains to show why W → H is a compact inclusion. It is well-known that

W 1,2(Ω(r)) ⊂ L2(Ω(r)) is a compact inclusion for Ω(r) = D(r) or Ω(r) = D(r) ∩ H̄.

Thus, by a diagonal argument, we can pass to a subsequence vn and that vn → v∞

for some limit v ∈ L2
loc (in the L2

loc topology).
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We easily estimate

∥vn∥2L2(Ω(2k) Ω(2k−1)) ≤
1

4k−1
∥zvn∥2L2(Ω(2k) Ω(2k−1)) .

Since Ω(2r) Ω(r) is precompact, we must have

∥v∞∥2L2(Ω(2k) Ω(2k−1)) = lim ∥vn∥2L2(Ω(2k) Ω(2k−1)) ≤
C2

4k−1
.

Since the right hand side is summable, we conclude that v∞ is actually in L2. It

follows that, for all k, we have

∥v∞ − vn∥2L2 ≤ ∥v − vn∥2L2(Ω(2k)) +
∑
ℓ>k

∥v∞∥2L2(Ω(2ℓ) Ω(2ℓ−1)) + ∥vn∥2L2(Ω(2ℓ) Ω(2ℓ−1)) .

≤ ∥v∞ − vn∥2L2(Ω(2k)) + 2C24−k

Pick k large enough that the last term is less than ϵ, and then take the limit n→ ∞,

yielding

lim sup ∥v∞ − vn∥2L2 ≤ ϵ.

This implies that vn → v∞ in L2, completing the proof. □

8.4.3. Stabilizing Dσ and computing its index. In this section we will stabilize Dσ by

adding a cokernel element cζ for each zero ζ with count −1 (Figure 3). We will also

“co”-stabilize it by adding a kernel element kζ for each ζ with count +1.

We define the following elements of L2(C,C) and L2(H̄,C):

(8.15)

at ζ ∈ Z+ kζ = i exp(−1

2
|z|2) and cζ = 0,

at ζ ∈ Z− kζ = 0 and cζ = i exp(−1

2
|z|2),

at ζ ∈ Z++ kζ = exp(−1

2
|z|2) and cζ = 0,

at ζ ∈ Z−− kζ = 0 and cζ = exp(−1

2
|z|2),

at ζ ∈ Z+− ∪ Z−+ kζ = 0 and cζ = 0,

The results of Lemmas 8.4, 8.5 and Corollary 8.6 show that spanζ∈Z(kζ) = kerD1 ⊂
H, and spanζ∈Z(cζ) = kerD1,∗ ⊂ H.

Keeping track of the counts of the various kinds of zeros, we see that

(8.16) dimkerD1 − dimkerD1,∗ = X+ µτ
Mas.

Throughout the subsequent arguments, we will use k and c to denote linear combi-

nations of the above basic kernel and cokernel elements.
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We consider Φσ(k) and Φσ(c) as elements ofW 1,2(E,F ) andW 1,2(Λ0,1⊗E,F ∗), using

the special coordinate charts zζ and frames Y defined above.

We define the stabilized operator by the formula:

Dσ
st : W

1,2(E,F )⊕ kerD1,∗ → L2(Λ0,1 ⊗ E)⊕ kerD1

Dσ
st(ξ, c) = (Dσ(ξ) + Φσ(c),

∑
ζ ∥kζ∥−2 ⟨Πσ(ξ),kζ⟩kζ).

Note that the second factor is simply an orthogonal projection. The following result

will complete the proof of the index formula.

Proposition 8.8. The operator Dσ
st is an isomorphism for σ sufficiently large.

See [Wen20, §5.7] for a similar result.

Proof. We summarize the strategy. First prove that Dσ
st is eventually uniformly

injective, in the sense that there are constants C, σ0 so that

(8.17) σ > σ0 =⇒ ∥(ξ, c)∥L2 ≤ C ∥Dσ
st(ξ, c)∥L2 .

Second, we show that Dσ
st is eventually surjective. Then Dσ

st is eventually an isomor-

phism, as desired.

We prove (8.17) by contradiction; suppose not and then conclude a sequence σn → ∞
and elements (ξn, cn) so that ∥(ξn, cn)∥L2 = 1 but ∥Dσn

st (ξn, cn)∥L2 → 0. Let’s agree

to abbreviate σ = σn to avoid excessive subscripts during the course of this argument.

It is clear that

∥Dσ(ξn)∥L2 ≤ ∥Dσ
st(ξn, cn)∥L2 + C ∥cn∥L2 ,

for a fixed constant C. In particular, we can apply our compactness result to ξn

and conclude that, after passing to a subsequence Πσ(ξn) converges to k and Rσ(ξn)

converges to 0. However, since kζ form an orthogonal basis for kerD1 we have

k = lim
n→∞

∑
ζ

∥kζ∥−2 ⟨Πσ(ξn),kζ⟩kζ .

Therefore Dσ
st(ξ, c) → 0 implies that k = 0. Therefore Πσ(ξn) converges to zero in

L2, and since we know Rσ(ξn) → 0, we conclude ξn converges to zero in L2.

In order to contradict our initial assumption, it suffices to show that the inner product

⟨Φσ(c), D
σ(ξ)⟩ converges to zero (because then ∥cn∥2 ≤ ∥Dσ

st(ξn, cn)∥
2 + ϵ must hold

eventually, by Pythagoras’ theorem, for arbitrary ϵ). Using the adjointness property

and (8.11), we have

⟨Φσ(cn), D
σ(ξn)⟩ = ⟨cn,Πσ(D

σ(ξn))⟩ = σ1/2⟨cn, D1(Πσ(ξn))⟩+ o(1) = o(1),

where we use the fact that cn ∈ kerD1,∗. This completes the proof by contradiction,

and hence we have (8.17).



8.4. LINEAR COMPACTNESS AND A STABILIZATION OF Dρ 129

To prove that Dσ
st is eventually surjective, we also argue by contradiction. Suppose

that it were not. Then by standard properties of Hilbert spaces, we could find a unit

norm sequence ηn,kn (with σn → ∞) so that

⟨Dσ(ξ) + Φσ(c), ηn⟩+ ⟨Πσ(ξ),kn⟩ = 0 for all n, ξ, c,

Using Π∗
σ = Φσ and c = 0, we conclude that Dσ,∗(ηn) = −Φσ(kn). Since this is

bounded in L2, we can apply the compactness result to conclude that Πσ(ηn) converges

to a solution of kerD1,∗. However the assumption that

⟨Φσ(c), ηn⟩ = 0,

for all c ∈ kerD1,∗, allows us to conclude that Πσ(ηn) converges to 0. It follows

that ηn converges to zero (since we already know Rσ(ηn) converges to zero). Set

ξn = Φσ(kn) and c = 0 to conclude that

0 =⟨Dσ(Φσ(kn)), ηn⟩+ ⟨Φσ(kn),Φσ(kn)⟩.

=⟨Φσ(D
1(kn)) + o(1), ηn⟩+ ⟨Φσ(kn),Φσ(kn)⟩.

=⟨o(1), ηn⟩+ ⟨Φσ(kn),Φσ(kn)⟩.

=⇒ ∥Φσ(kn)∥ = o(1) =⇒ ∥kn∥ = o(1).

We have shown that both ηn,kn converge to zero, which contradicts our assumption

that they were unit norm. This completes the proof. □

Remark 8.9. It follows easily from Proposition 8.8 that

ind(Dσ) = dimkerD1 − dimkerD1,∗.

To see why, write Dσ
st in matrix form. Deform the operator by keeping the 1, 1 entry

fixed and setting all the other entries to zero. This deformation does not change the

Fredholm index. It is easy to compute the Fredholm index after the deformation.

Equation (8.16) then implies that ind(Dσ) = X+ µτ
Mas, which completes the proof of

Lemma 8.2. This in turn completes the proof of Proposition 8.1 (the index formula for

ind(Dal)). Applying our earlier result Proposition 7.3 (relating ind(D) and ind(Dal))

completes the proof of our main result, Theorem 6.2.





Chapter 9

Uniform estimates for holomorphic curves in symplectizations

Consider the data (Y,Λ, α, J) of:

(i) a compact manifold Y 2n+1,

(ii) a contact form α,

(iii) a compatible complex structure Jξ on ξ = kerα, which induces an admissible

complex structure J on R× Y , and

(iv) a closed Legendrian submanifold Λ.

The goal of this chapter is to prove that any holomorphic cylinder/strip

u : R× S → (R× Y,R× Λ),

where S = [0, 1] or S = R/Z, with finite Hofer energy is asymptotic to a trivial

cylinder over a Reeb orbit or chord, in the sense explained in §1.3.2. We will prove

this result assuming the Reeb orbit/chord is non-degenerate.

We will also prove that du satisfies uniform Ck bounds for each k ≥ 0. The main

techniques we will use to establish the C0 convergence of pr ◦ u and the Ck bounds

on du are (i) a bubbling argument and (ii) elliptic bootstrapping.

9.0.1. Preliminaries. To state the precise result we will prove, we need to first give a

few definitions:

Definition 9.1. We can associate to (α, Jξ) the almost Kähler triple (g, J, ω) on

R× Y where ω = d(eσpr∗α), and

(9.1) g = e−σω(−, J−) = dσ2 + pr∗α2 + pr∗dα(−, J−).

This metric defines a translation invariant distance function on R× Y , which we will

use below.

Definition 9.2. Suppose that u : Σ̇ → R× Y is a smooth map. We define

Hofer Energy of u = sup
f∈P

∫
Σ̇

u∗d(ef(σ)pr∗α),

where P is the class of increasing diffeomorphisms f : R → (0, 1).

131



132 9. UNIFORM ESTIMATES FOR HOLOMORPHIC CURVES IN SYMPLECTIZATIONS

Another energy quantity which will play a role in our proof is the dα-energy, defined

by

dα-energy of u =

∫
Σ̇

u∗dα.

It is straightforward to show that the Hofer energy of u is positive for every non-

constant holomorphic curve u. Similarly, the dα-energy is non-negative for all holo-

morphic curves. It is also not hard to show that the dα-energy of a holomorphic curve

u is bounded from above by the Hofer energy of u.

Definition 9.3. Let u, v be two smooth maps defined on [0,∞)× S. We define

distC∞(s)(u; v) = distC∞(u|[s−1,s+1]×S, v|[s−1,s+1]×S).

Theorem 9.4. Let u : [0,∞) × S → (R × Y,R × Λ), where S = R/Z or S = [0, 1],

be a J-holomorphic map with finite Hofer energy. We have the following:

(a) The derivative du satisfies uniform Ck bounds in the sense that

sups,t

∣∣∇kdu(s, t)
∣∣ <∞ for each k.

(b) If sn → ∞ is any sequence, there is a subsequence (still denoted sn) so that

(9.2)
lim
n→∞

distC∞(sn)(u;Ts+ σ0, c(t)) = 0, or

lim
n→∞

distC∞(sn)(u;−Ts+ σ0, c(1− t)) = 0

for some Reeb chord c : [0, 1] → (Y,Λ), or orbit c : R/Z → Y , which we parametrize

to have constant speed equal to its action T .

(c) If c is a non-degenerate Reeb chord and (9.2) holds then we have

lim
s→∞

distC∞(s)(pr ◦ u(s, t), c(t)) = 0, (or c(1− t)).

(d) If c is a non-degenerate Reeb orbit and (9.2) holds then

lim
s→∞

inf
t0∈R/Z

distC∞(s)(pr ◦ u(s, t), c(t+ t0)) = 0, (or c(−t+ t0)).

In other words, pr ◦ u(s, t) is asymptotically always close to one of the orbits in the

R/Z family of orbits {γ(t+ t0) : t0 ∈ R/Z}.
Remark 9.5. In the next Chapter, §10, we will upgrade the above to conclude that

σ ◦ u(s, t) converges, and, in the orbit case, that pr ◦ u(s, t) converge to a fixed

parameterization of the limit orbit γ(t).

Remark 9.6. After reparametrizing those with negative sign via the map (s, t) 7→
(−s, 1− t), so the domain changes to (−∞, 0]× S, we conclude

lim
n→∞

distC∞(±sn)(u, (Ts+ σ0, c(t))) = 0
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holds in all cases. As explained in 1.3.2, the two types of convergence depend on

whether σ ◦ u converges to ±∞.

9.0.2. On the necessity of the non-degeneracy assumption. It seems to be an interest-

ing question as to whether or not the limit

lim
s→+∞

pr ◦ u(s, t)

exists without the non-degeneracy assumption.

It is illuminating to compare with the case where (W,L, J) is a compact symplectic

manifold with Lagrangian L and compatible almost complex structure J . It can be

shown that every finite energy holomorphic curve w : [0,∞)× [0, 1] → (W,L) satisfies

lims→∞w(s,−) = p ∈ L.

In other words, every holomorphic strip has a well-defined asymptotic limit, even

though the set of asymptotics is not discrete (i.e., the asymptotics are degenerate).

Rather, the set of asymptotics forms the manifold L. In some sense, the set of

asymptotics is degenerate in a controlled way, analogous to how the critical points of

a Morse-Bott function are degenerate.1

In [Bou02], the author proves asymptotic convergence results in the case when c is

a Reeb orbit in a Morse-Bott family of orbits, in the sense that there is a compact

manifold Σ foliated by orbits of R, and the linearization of the Reeb flow operator is

non-degenerate when restricted to variations lying in the normal bundle to Σ.

Indeed, a non-degenerate orbit γ can be considered as a simple case of a Morse Bott

family of orbits. The analysis in §10 which proves that u(s, t) converges to γ(t),

i.e., that there is a fixed limiting parametrization of the orbit, is fairly similar to

the analysis in [Bou02], which proves that a holomorphic curve is asymptotic to a

well-defined parametrized Reeb orbit in the Morse-Bott family.

9.0.3. Outline of the proof. Our proof Theorem 9.4 has four steps. The first step will

reduce the proof of the Ck bound for every k to the case k = 0. The main technique

in this step will be elliptic bootstrapping. The next step will be to show that if |du|
is unbounded, then a non-constant holomorphic plane or half-plane with boundary

on R× Λ with finite Hofer energy and zero dα-energy exists. The third step will be

to show that there are no non-constant planes or half-planes with finite Hofer energy

and zero dα-energy. The first three steps together prove the uniform Ck bounds.

1Note that the Morse-Bott condition for f is not just that the critical points form a manifold L; it
also requires that the Hessian ∇df is non-degenerate when restricted to the normal bundle of L.
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Finally, in the fourth step, we will investigate the asymptotic convergence of u(s, t)

as s→ ∞.

9.1. Elliptic bootstrapping and bounding higher derivatives

In this section we will prove the following lemma:

Lemma 9.7. Let un : D(zn,
1
2
) → (R×Y,R×Λ) be a sequence of holomorphic curves

whose first derivatives are uniformly bounded. Then supn

∣∣∇kdun(zn)
∣∣ <∞ for each

k.

Here D(z, r) is the domain D(z, r)∩R× [0, 1], as shown in the figure below for various

values of z.

z1
z2

z3

Figure 1. The domain D(z, 1
2
) is a partial disk. Shown for three

points z1, z2, z3.

Remark 9.8. In the statement of the lemma we use metric g from (9.1) to mea-

sure sizes. We use the Levi-Civita connection ∇ associated to g to take the higher

derivatives. Any translation invariant metric will suffice for this lemma.

In our proof of Lemma 9.7 we will require two analytical results: the Sobolev embed-

ding theorem and the elliptic estimates for the Laplacian. We state these prerequisites

here.

Lemma 9.9 (Sobolev embedding theorem). For every bounded Lipshitz domain Ω ⊂
R2 there exists constants c2(Ω) c1(Ω) > 0 so that

∥f∥C0(Ω) ≤ c1 ∥f∥W 1,4(Ω) ≤ c2 ∥f∥W 2,2(Ω) .

Proof. See [MS12, Theorem B.1.11] for a more general result. □

Lemma 9.10 (Elliptic estimates for the Laplacian). For every pair of domains Ω1,Ω2 ⊂
H with Ω̄1 ⊂ Ω2 there exists a constant c(k,Ω1,Ω2) so that

∥u∥Wk+2,2(Ω1)
≤ c(∥∆u∥Wk,2(Ω2)

+ ∥u∥Wk+1,2(Ω2)
),

for all smooth u : Ω2 → Rd satisfying the Dirichlet boundary conditions u(R∩Ω2) = 0

or the Neumann boundary conditions ∂tu(R ∩ Ω2) = 0.

Proof. See [RS01, Lemma C.2] for a short proof. □
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Note that we will only consider Ω = D(0, r) or Ω = D(0, r) ∩ H, when applying

Lemmas 9.9 and 9.10.

Proof (of Lemma 9.7). This argument is inspired by the proof of [RS01, Lemma

C.3].

In search of a contradiction, let us suppose that
∣∣∇kdun(zn)

∣∣ is unbounded. Then,

passing to a subsequence, we may assume that limn→∞
∣∣∇kdun(zn)

∣∣ = ∞.

Let us redefine our curves by translating in the vertical direction un := Tn ◦ un. This
does not change the sizes of the derivatives. We pick Tn so that un(zn) converges to

some point p ∈ R× Y , after potentially taking a further subsequence.

Write zn = sn + itn. By passing to a further subsequence, we may suppose that tn

converges to a point t∞ ∈ [0, 1]. By replacing un(s, t) := un(−s,−t), we may suppose

that t∞ ∈ [0, 1
2
]. We consider two cases, either t∞ = 0 or t∞ ∈ (0, 1

2
]. We will prove

the case t∞ = 0, i.e., when the points zn are converging to the boundary, and leave

the other (simpler) case to the reader.

Consider the function vn(s+ it) = un(sn+s+ it). Since zn = sn+ itn and tn converges

to 0, eventually vn is defined on the half-disk D(0, 1
3
).

itn

0

Figure 2. The half disk D(0, 1
3
) is eventually contained in D(itn,

1
2
).

Since vn(itn) = un(zn), we conclude that vn(itn) and vn(0) both converge to p. There-

fore p lies on R× Λ. Choose now a coordinate chart φ : Ū → B̄ ⊂ R2n centered at p

which identifies (R × Λ) ∩ Ū with (Rn × {0}) ∩ B̄ and so that the induced complex

structure dφ · J · dφ−1 is equal to J0 along Rn × {0}. To see that such a coordinate

chart exists one can, e.g., pick the first n coordinates x1, · · · , xn for R× Λ and then

define the remaining coordinates y1, · · · , yn by exponentiating the vector fields J∂xi

(which are transverse to R× Λ since J is compatible with ω).

By the assumed C1 bound, we conclude that vn eventually maps D(0, δ) into U . Thus

we may (eventually) define the R2n-valued function wn(z) = φ ◦ vn(z).
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Then, abusing notation and letting J := dφ · J · dφ−1, we conclude that wn satisfies

the boundary value problem:

(9.3)

{
∂swn + J(wn) · ∂twn = 0

wn(s, 0) ∈ Rn × {0}

We decompose wn(s, t) into its real and imaginary parts:

wn(s, t) =

[
Xn(s, t)

Yn(s, t)

]
.

We easily compute that Yn(s, 0) = 0 and 0 = ∂sYn(s, 0) = −∂tXn(s, 0). This means

that Xn satisfies the Neumann boundary conditions and Yn satisfies the Dirichlet

boundary conditions. Therefore we conclude from Lemma 9.10 that, for k ≥ 2, wn

satisfies the elliptic estimates:

(9.4) ∥wn∥Wk,2(D(δ/k)) ≤ ck(∥∆wn∥Wk−2,2(D(δ/(k−1))) + ∥wn∥Wk−1,2(D(δ/(k−1)))).

Here we abbreviate D(r) := D(0, r).

0

Figure 3. Nested disks D(δ/k).

In order to use (9.4), we compute

(9.5)
(∂s − J(wn)∂t)(∂swn + J(wn)∂twn) = 0

=⇒ ∆wn = ∂t[J(wn)]∂swn − ∂s[J(wn)]∂twn.

Our strategy will be to use (9.4) and (9.5) to bootstrap the initial C1 bound to a

W k,2 bound on the disk D(δ/k), for all k. To be more precise, we will prove:

(9.6) sup
n

∥wn∥Wk,2(D(δ/k)) <∞

by induction on k. The base case k = 1 holds from the initial C1 bound.

Since wn is uniformly bounded in C1, we conclude from (9.5) that ∆wn is uniformly

bounded in L2(D(δ)). Therefore (9.4) implies that (9.6) holds with k = 2.

It is well-known that:

(9.7) sup
n

∥wn∥Wk,2(D(r)) <∞ =⇒ sup
n

∥J(wn)∥Wk,2(D(r)) <∞,
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for all k ≥ 0, since J is smooth.

It is also easy to see that the following quadratic estimate holds:

(9.8) ∥fg∥W 1,2(Ω) ≤ ∥f∥W 1,2(Ω) ∥g∥C0(Ω) + ∥f∥C0(Ω) ∥g∥W 1,2(Ω) .

In particular, applying (9.8) to (9.5) implies that

sup
n

∥∆wn∥W 1,2(D(δ/2)) = sup
n

∥∂t[J(wn)]∂swn − ∂s[J(wn)]∂twn∥W 1,2(D(δ/2)) <∞,

since we know J(wn), wn are uniformly bounded in W 2,2(D(δ/2)) and C1.

Then we easily conclude from the elliptic estimates (9.4) that the desired result (9.6)

holds with k = 3.

To continue the bootstrapping argument, we will require another quadratic estimate;

for W k,2 with k ≥ 2 we can use the following estimate:

(9.9) ∥fg∥Wk,2(Ω) ≤ Ck ∥f∥Wk,2(Ω) ∥g∥Wk,2(Ω) .

It is easy establish (9.9) for k > 2 by induction using

∥fg∥Wk,2(Ω) ≤ ∥fg∥Wk−1,2(Ω) + ∥∇f · g∥Wk−1,2(Ω) + ∥f · ∇g∥Wk−1,2(Ω) .

The base case when k = 2 follows from a similar observation:

∥fg∥W 2,2(Ω) ≤ ∥fg∥W 1,2(Ω) + ∥∇f · ∇g∥L2 + ∥∇∇f · g∥L2 + ∥f · ∇∇g∥L2 .

The first term above can be estimated using our first quadratic estimate (9.8), together

with the Sobolev embedding for C0 ⊂ W 2,2. The last two terms can be estimated

using ∥ab∥L2 ≤ ∥a∥L2 ∥b∥C0 and the Sobolev embedding theorem. The hard term to

estimate is ∥∇f · ∇g∥L2 . To do so, we will use the Sobolev embedding theorem for

W 1,4 ⊂ W 2,2, and the Hölder-type inequality

∥∇f · ∇g∥L2 ≤ ∥∇f∥L4 ∥∇g∥L4 .

Returning to our bootstrapping argument, we can now conclude from (9.7) and (9.9)

that

sup
n

∥∆wn∥W 2,2(D(δ/2)) = sup
n

∥∂t[J(wn)]∂swn − ∂s[J(wn)]∂twn∥W 2,2(D(δ/2)) <∞.

Then applying the elliptic estimates (9.4) proves (9.6) in the case k = 4. The argu-

ment repeats, without any further modification, to conclude (9.6) for all k.

We are almost finished with the proof. Recall that we assumed:

lim
n→∞

∣∣∇kdun(zn)
∣∣ = ∞
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in search of a contradiction. Since φ ◦ un(z) = wn(z − sn), we conclude that wn is

also unbounded in the Ck+1 norm near zn − sn = itn (since φ is a diffeomorphism

between compact domains, it distorts the Ck+1 size by a bounded amount).

Since tn converges to 0, itn eventually enters the disk D(δ/(k + 3)). On this domain

the Ck+1 norm is bounded by the W k+3,2 norm, by the Sobolev embedding theorem.

Then (9.6) with k replaced by k + 3 contradicts the fact that the Ck+1 size of wn is

unbounded. This contradiction completes the proof. □

9.2. The bubbling argument

In this section we will prove the following lemma:

Lemma 9.11. Suppose that un : D(zn,
1
2
) → (R × Y,R × Λ) is a sequence of holo-

morphic curves.

Then we have the following alternative: either supn |dun(zn)| < ∞, or there exists a

non-constant holomorphic plane v∞ : C → R×Y or half-plane v∞ : H → (R×Y,R×Λ)

with
(Hofer energy of v∞) ≤ lim sup

n→∞
(Hofer energy of un)

(dα-energy of v∞) ≤ lim sup
n→∞

(dα-energy of un).

Remark 9.12. The case that will be of interest to us is the following: suppose we

have a single holomorphic curve u : [0,∞)× [0, 1] → R× Y with finite Hofer energy.

Suppose that the derivative of u is unbounded. Then we will set

un = u|D(zn,
1
2
)

for a sequence of points with supn |dun(zn)| = ∞. This forces limn→∞ s(zn) = ∞,

and so

lim sup
n

(dα-energy of un) = 0.

Then Lemma 9.11 will imply the existence of a finite Hofer energy plane or half-plane

with zero dα-energy. In §9.3 we will show that such planes/half-planes cannot exist.

This argument shows u must have a bounded derivative.

One technical result needed in the proof of Lemma 9.11 is known as “Hofer’s lemma,”

Lemma 9.13 (Hofer’s Lemma). Let d : X → [0,∞) be a continuous function on a

complete metric space; and let ϵ′ > 0 and x′ ∈ X. One can find 0 < ϵ ≤ ϵ′ and x ∈ X

so that

(i) dist(x, x′) < 2ϵ′,
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(ii) d(y) ≤ 2d(x) for all y ∈ D(x, ϵ).

(iii) ϵd(x) ≥ ϵ′d(x′),

Hofer’s lemma was introduced in [HV92, Lemma 3.3] (moreover, they show that the

lemma gives a characterization of completeness). We will give the proof here for the

reader’s convenience.

Proof (of Lemma 9.13). Let ϵn = 2−nϵ′, and define a (potentially terminating) se-

quence xn as follows: let x0 = x′, and choose xn+1 ∈ D(xn, ϵn) so that d(xn+1) >

2d(xn). If no such xn+1 exists (i.e., the sequence terminates at xn), then we conclude

that, for all y ∈ D(xn, ϵn) we have d(y) ≤ 2d(xn), so (ii) is satisfied with x = xn,

ϵ = ϵn. By construction, we have

ϵnd(xn) ≥ 2ϵnd(xn−1) = ϵn−1d(xn−1) ≥ · · · ≥ ϵ0d(x0) = ϵ′d(x′),

so (iii) would also be satisfied. Since dist(x0, xn) ≤ ϵ0+ϵ1+· · ·+ϵn ≤ 2ϵ0, we conclude

(i) also holds.

Thus the proof of the lemma is reduced to proving that the above recursion terminates.

In search of a contradiction suppose it does not converge. Then the sequence xn

converges, however, d(xn) is unbounded since d(xn) > 2d(xn−1). This is impossible,

and so we complete the proof. □

Proof (of Lemma 9.11). Let un : D(zn,
1
2
) → R × Y be a sequence of holomorphic

curves. Without loss of generality, let us suppose that the derivative dun(zn) is

unbounded. By passing to a subsequence, we may suppose that R′
n := |dun(zn)|

satisfies limn→∞R′
n = +∞.

Now pick 0 < ϵ′n < 1/6 so that limn→∞ ϵ′n = 0 but limn→∞ ϵ′nR
′
n = +∞.

Introduce the function dn(z) = |dun(z)|, and apply Hofer’s lemma with ϵ′ = ϵ′n and

x′ = 0 to conclude ϵn ≤ ϵ′n and xn so that

(i) xn ∈ D(zn, 2ϵ
′
n),

(ii) |dun(y)| ≤ 2 |dun(xn)| for y ∈ D(xn, ϵn),

(iii) ϵn |dun(xn)| ≥ ϵ′nR
′
n.

The reader may complain that dn is not defined on a complete metric space, but it

is easy to see that every point and ball considered in the recursive proof of Hofer’s

lemma will remain entirely in D(zn, 3ϵ
′
n). Since we chose ϵ′n < 1/6, we see that we

can cut off dn outside of D(zn, 3ϵ
′
n) (and obtain a continuous function defined on all

of R× [0, 1]) without affecting our conclusions.

We abbreviate Rn := |dun(xn)|. Note that by item (iii) Rn is still diverging to ∞.
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The idea now is to rescale the domains of un by the factor of R−1
n ; we introduce

vn : D(0, Rnϵn) ∩Rn(R× [0, 1]− xn) given by vn(z) = un(xn +R−1
n z).

The domain of vn seems a bit awkward, but we can simplify it by writing xn = sn+itn

and observing that

Rn(R× [0, 1]− xn) = R× [−tnRn, (1− tn)Rn].

Im(z) = −tnRn

Im(z) = (1− tn)Rn

0 D(0, ϵnRn)

Figure 4. The domain of the rescaled map vn is the shaded region.
Depending on the limit of tnRn, the domain is either expanding to cover
the entire complex plane C, or an upper or lower half-plane.

We can pass to a further subsequence so that tnRn and (1− tn)Rn converge in [0,∞].

There are then three cases to consider: if either tnRn converges to a finite number,

then the domains of vn converge to an upper half-plane. On the other hand, if

(1− tn)Rn converges to a finite number, then the domains of vn converge to a lower

half-plane.

To be precise, by “converge to a half plane” we mean that there exists a half plane H

with the property that any compact set in H is eventually contained in the domain

of vn.

If both tnRn and (1 − tn)Rn diverge to ∞, the domains of vn converge to the entire

complex plane C.

It is straightforward to conclude that

(9.10) |dvn(0)| = 1 and |dvn(z)| ≤ 2

for all z in the domain of vn (using (ii)). As we did in the proof of Lemma 9.7, we

now replace vn := Tn ◦ vn where Tn is a sequence of vertical translations. This does

not affect (9.10). We choose Tn so that vn(0) converges (taking a subsequence if

necessary).

The Arzelà-Ascoli theorem implies that vn converges in C0
loc to a continuous function

v∞ : Ω → R× Y with where Ω is either a half-plane or C. If Ω is a half-plane, then

the aforementioned C0
loc convergence implies that v∞ maps the boundary onto R×Λ.
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By our elliptic bootstrapping lemma (Lemma 9.7), we conclude that the higher deriva-

tives of vn are uniformly bounded on compact sets. Here we use the fact that if z

lives in a compact set of Ω, then eventually z has a neighborhood in the domain of

vn identical to one of the partial disks considered in Lemma 9.7.

The Ck
loc bounds allow us to upgrade the conclusion of the Arzelà-Ascoli theorem to

conclude that (i) the limit map v∞ is smooth and (ii) vn actually converges in C∞
loc to

v∞. In particular, v∞ is holomorphic. Moreover, by the C1
loc convergence, we conclude

that |dv∞(0)| = 1, and hence v∞ is non-constant.

It remains only to prove the bounds on the energies of v∞. This follows from a fairly

standard argument, which we will briefly explain. If v∞ has energy greater the E,

then for ϵ > 0 there is a compact domain K ⊂ Ω on which v∞ has energy greater

than E − ϵ. Eventually vn is defined on K, and since vn converges to v∞ in C1(K),

we conclude that the energy of vn on K is eventually greater than E − 2ϵ. Therefore

E − 2ϵ < lim sup
n→∞

(energy of vn).

Since E was an arbitrary number less than the energy of v∞, and ϵ > 0 was also

chosen arbitrarily, we conclude that

energy of v∞ < lim sup
n→∞

(energy of vn).

This argument works verbatim replacing “energy” with “dα-energy.” This argument

also applies if we set

“energy” of u =

∫
u∗d(ef(σ)dα).

Then we can take the supremum over all f as required by the definition of the Hofer

energy. This completes the proof of the lemma. □

9.3. Holomorphic curves with zero dα-energy

Our main goal in this section is to prove that there are no holomorphic planes or

half-planes with finite Hofer energy and zero dα-energy. As a first step, we prove the

following lemma:

Lemma 9.14. Let Σ be a connected Riemann surface, and let u : Σ → R× Y be a

holomorphic map with zero dα-energy. Then there is a leaf L → R × Y of the Reeb

foliation (the foliation spanned by ∂σ and R) so that u factors smoothly through L.

Proof. Since the dα-energy is the integral of u∗pr∗dα, and pr∗dα is a J-compatible

symplectic form on the contact distribution pr∗ξ ⊂ T (R× Y ), we conclude that

im(du) ⊂ ker pr∗dα = R∂σ ⊕ RR.
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Pick a point z ∈ Σ and let u(z) = p. Choose coordinates x1, x2, y1, · · · , y2n centered

on p so that ∂x1 = ∂σ and ∂x2 = R (this is possible since ∂σ and R commute). On an

open set around z we conclude that d(yi ◦ u) = 0 for all i, since

im(du) ⊂ span {∂x1 , ∂x2} .

In particular u factors smoothly through the locus where y1 = · · · = y2n−2 = 0, which

is evidently part of some leaf L.

This argument shows that set of points z ∈ Σ which land in L is an open set.

However, since the complement of L is a union of other leaves, we conclude by the

same argument that the set of points which don’t land in L is also an open set. By the

connectedness of Σ, we conclude that all points u(Σ) ⊂ L. Our argument also shows

the factorization of u through the inclusion L → R × Y is smooth. This completes

the proof. □

It is easy to classify the leaves of the Reeb foliation: each leaf is of the form R × γ

where γ is a Reeb flow line. In particular, if L is a leaf, then

(9.11) Γ : σ + iτ ∈ C 7→ (σ, γ(τ)) ∈ L

is either a diffeomorphism or the universal cover (depending on whether γ is a closed

orbit or not). Also note that the fact that J is assumed to be admissible implies that

(9.11) is holomorphic.

We compute the following formula:

Γ∗d(ef(σ)pr∗α) = f ′(σ)ef(σ)dσ ∧ dτ.

Combining Lemma 9.14 with (9.11) allows us to prove the following:

Corollary 9.15. Let Σ be a simply-connected Riemann surface. If u : Σ → R × Y

is a holomorphic curve with zero dα-energy, then there exists a holomorphic map

w : Σ → C so that Γ ◦ w = u. If u has finite Hofer energy, then

(9.12) sup
f∈P

∫
Σ

w∗(f ′(σ)ef(σ)dσ ∧ dτ) <∞,

where P is the collection of functions from Definition 9.2.

With this results in place, we can now prove the following lemma:

Lemma 9.16. There are no non-constant holomorphic planes u : C → R × Y or

half-planes u : H → (R× Y,R× Λ) with finite Hofer energy and zero dα-energy.

Proof. We argue by contradiction. By Corollary 9.15, we conclude a either a map

w : C → C or a map w : H → C so that the energy (9.12) is finite.
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Consider the case when u : H → R× Y . Since u(R) ⊂ R× Λ and the inverse image

Γ−1(R × Λ) is a union of horizontal2 lines τ = const, we conclude that the induced

map w satisfies w(R) ⊂ L for some horizontal line L. Then w can be doubled by the

Schwarz reflection principle to obtain a holomorphic plane w : C → C.

The doubling process increases (9.12) by a factor of 2, since the energy only depends

on the horizontal coordinate which is unchanged when we reflect.

Thus it suffices to prove the case w : C → C. We observe that the integral of

f ′(σ)ef(σ)dσ ∧ dt over a region of the form [a, b]× R is always infinite. In particular,

if w surjects on [a, b]×R, then the integral (9.12) would be infinite.

Picard’s little theorem asserts that w must surject onto C or C minus a single point.

In particular, we can find a < b so that w surjects onto [a, b]×R. This completes the

proof.

If the reader does not like using Picard’s theorem, we can also argue as follows. Recall

that under the stereographic projection p : C → CP1, the Fubini-Study form ωFS is

pulled back to

p∗ωFS =
dσ ∧ dτ

(1 + σ2 + τ 2)2
.

(See [MS17, Exercise 4.3.4]). Now observe that∫ +∞

−∞

1

(1 + σ2)2
= c <∞.

If we define

f ′(σ) =
1

c

1

(1 + σ2)2
,

and f(σ) =
∫ σ

−∞ f ′(σ′)dσ′, then f : R → (0, 1) is an increasing diffeomorphism, and

hence is in the family P of functions from Definition 9.2. Moreover, it is clear that

(9.13) p∗ωFS =
dσ ∧ dτ

(1 + σ2 + τ 2)2
≤ cef(σ)f ′(σ)dσ ∧ dτ.

In particular, we conclude that the composite p ◦ w : C → CP1 has finite Fubini-

Study area. By the removal of singularities theorem (see [MS12, Theorem 4.1.2]) we

conclude that p ◦ w extends to a holomorphic map CP1 → CP1. In particular, p ◦ w
is surjective, and hence w : C → C is surjective.

Thus w surjects onto R× [a, b], contradicting (9.12) (as we already explained above).

This completes the proof.3 □

2The σ coordinate is the real coordinate on C, even though it corresponds to the “vertical” coordinate
in the symplectization. This conflict between “horizontal” and “vertical” is a bit unfortunate.
3After writing this, the author came up with another proof: by a bubbling argument, it suffices to
exclude non-constant maps w : C → C satisfying (9.12) with bounded derivative. Non-constant maps
with bounded derivative are affine, and hence are surjective.
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In Remark 9.12, we explained that if a holomorphic curve

u : [0,∞)× [0, 1] → (R× Y,R× Λ)

with finite Hofer energy had an unbounded first derivative, then the bubbling lemma

(Lemma 9.11) would produce a finite energy plane or half-plane with zero dα-energy.

This conclusion is obviously incompatible with Lemma 9.16 above. Thus we have

concluded the first part of Theorem 9.4, namely that for every holomorphic curve

u : [0,∞)× [0, 1] → (R× Y,R× Λ) with finite Hofer energy we have

(9.14) sups,t

∣∣∇kdu(s, t)
∣∣ <∞,

for all k.

Proof. Remark 9.12 together with Lemma 9.16 imply the C1 bound (k = 0). The

result for k ≥ 1 follows from Lemma 9.7. □

Before we end this section, we wish to prove two more lemmas concerning holomorphic

curves with zero dα-energy.

Lemma 9.17. Let u : R × R/Z → (R × Y,R × Λ) be a non-constant holomorphic

curve with finite Hofer energy and zero dα-energy. Then there exists a Reeb orbit

c : R/Z → Y of action T and a real number σ0 so that either

σ ◦ u(s, t) = ±Ts+ σ0 and pr ◦ u(s, t) = c(±t).

Proof. First we prove that the map u must lie in R × γ for a closed orbit γ. The

argument is similar to the proof of Lemma 9.16; observe that otherwise the composed

map u : R×R/Z → C → CP1 would have finite Fubini study area, and would therefore

extend to a holomorphic map CP1 → CP1. As argued previously, this would imply

the map u has infinite Hofer energy (by considering regions [a, b]× R ⊂ C).

Let Γ(s, t) = (Ts, γ(t)) where γ : R/Z → Y is the underlying simple Reeb orbit,

parametrized to have constant speed equal to its action. Then Γ parametrizes the leaf

which contains the image of u, so can write u = Γ◦w, where w : R×R/Z → R×R/Z
is a holomorphic map. We know that w has bounded derivatives, and hence w’s lift

C → C takes the form of an affine map, which must map iZ into iZ, and hence has

the form z 7→ kz + σ0/T where k ∈ Z and σ0 ∈ R. It follows that

u(s, t) = (Tks+ σ0, c(kt)).

Redefining T := Tk and c(t) = c(kt), i.e., replacing the simple orbit by its multiple

cover, we obtain the desired result. □

Lemma 9.18. Let u : R× [0, 1] → (R×Y,R×Λ) be a holomorphic curve with finite

Hofer energy and zero dα-energy. Then there exists a Reeb chord c : [0, 1] → (Y,Λ)
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and a real number σ0 so that either

σ ◦ u(s, t) = Ts+ σ0 and pr ◦ u(s, t) = c(t),

or

σ ◦ u(s, t) = −Ts+ σ0 and pr ◦ u(s, t) = c(1− t).

Proof. The argument is similar to the proof of Lemma 9.17. If u is constant, then

we can take T = 0 and c to be a constant map. Thus let us suppose that u is non-

constant. Since the strip R× [0, 1] is simply connected, we can apply Corollary 9.15

to conclude a holomorphic map

w : R× [0, 1] → C satisfying Γ ◦ w = u.

Here Γ : C → R × Y is defined by σ ◦ Γ(σ, τ) = σ and pr ◦ Γ(σ, τ) = c(τ) for some

Reeb flow line c (which is potentially non-embedded).

Since u has boundary on R×Λ, w must have boundary on Γ−1(R×Λ). As shown in

Figure 5, Γ−1(R× Λ) ⊂ C is a collection of horizontal lines τ = const corresponding

to the places where γ(τ) intersects Λ.

Without loss of generality, suppose that w(R × {0}) lies in the line τ = 0, and

w(R× {1}) lies in the line τ = T . If T < 0, then we replace w(s, t) := w(−s, 1− t),

so now T > 0.

We apply the Schwarz Reflection principle repeatedly to reflect w across horizontal

lines until we have extended w to a map w : C → C, with the property that w still

has bounded derivatives. To give some details of the construction, the first step is

extend w to a map R × [−1, 1] → C by defining w(s,−t) = w̄(s, t). The subsequent

steps are similar, and we leave them to the reader. See Figure 6 for an illustration of

the construction.

Note that if T = 0, (i.e., both boundaries of w lie on the same line), then the

extension w : C → C has a bounded imaginary part (noting that the original map w

has a bounded real part because its derivative is bounded). However, it is well-known

that there are no non-constant functions with bounded imaginary part.4 Since we

assume that w is non-constant, we conclude that T > 0.

Because the extension w : C → C has a bounded first derivative, w must be an affine

function w(z) = az + σ0. Since w sends the lines t = 0 to τ = 0 and t = 1 to τ = T ,

we must have a = T , and σ0 ∈ R. Thus we conclude that

w(s, t) = Ts+ iT t+ σ0 =⇒ σ ◦ u(s, t) = Ts+ σ0 and pr ◦ u(s, t) = c(Tt),

4proof: apply z 7→ eiz to obtain a bounded holomorphic function.
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or

σ ◦ u(s, t) = −Ts+ σ0 and pr ◦ u(s, t) = c(T (1− t)),

depending on whether or not we replaced w(s, t) by w(−s, 1 − t). Finally, redefine

c(t) := c(Tt) to obtain the desired time 1 parametrization. This completes the

proof. □

w T
0

Figure 5. Γ−1(R×Λ) is a collection of horizontal lines. The holomor-
phic map w : R× [0, 1] → C (shown as the shaded region) has boundary
on Γ−1(R× Λ).

w̄(s,−t)

w(s, t+ 2)− 2iT

w(s, t)

T

0

t ∈ [−2,−1]

t ∈ [−1, 0]

t ∈ [0, 1]

−2T

−T

...

...

Figure 6. Extending a function w(s, t) with w(s, 0) ∈ {0} × R and
w(s, 1) ∈ {T} × R to a holomorphic function C → C.

9.4. Asymptotic convergence to Reeb orbits and chords

In this section we will analyze the convergence of the chords pr◦u(s,−). Our goal is to

prove the rest of Theorem 9.4. Let u : [0,∞)×S → (R×Y,R×Λ) be a holomorphic

map with finite Hofer energy. Pick a sequence sn tending to +∞. Consider the

translated curves

vn : [−1

2
sn,∞)× S → (R× Y,R× Λ) given by vn(s, t) = u(s+ sn, t).

Note that vn(0,−) = u(sn,−).

It is clear from (9.14) that sups,t

∣∣∇kdvn(s, t)
∣∣ < Ck for constants Ck independent of

n. Moreover, the Hofer energy of vn is bounded from above.
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The dα-energy of vn equals the dα-energy of un on the region [1
2
sn,∞) × S. As a

consequence, the dα-energy of vn is tending to zero.

As we have done before, replace vn := Tn ◦ vn, where Tn are vertical translations of

R× Y , and Tn are chosen so that vn(0, 0) converges.

The Arzelà-Ascoli theorem implies that vn converges in C∞
loc to a limiting holomorphic

map v∞ : R × [0, 1] → R × Y . By the same argument given in the proof of Lemma

9.11, the dα-energy of v∞ is zero, and its Hofer energy is finite.

The Lemmas 9.17 and 9.18 apply, and we conclude that

v∞(s, t) = (σ0 + Ts, c(t)) or v∞(s, t) = (σ0 − Ts, c(1− t))

for some Reeb chord c or orbit. Note that c may be constant (in which case T = 0).

The C∞
loc-convergence of vn to v∞ implies that

(9.15) lim
n→∞

distC∞(sn)(un(s, t);σ0 + Ts, c(t)) = 0,

and a similar conclusion for negative punctures. Thus we have proved the second

assertion of Theorem 9.4.

To complete the proof of Theorem 9.4, we need to upgrade the convergence of (9.15)

by removing the dependence on the subsequence sn. For this part we assume that

the limit Reeb chord or orbit c is non-degenerate.

First we focus on the case of chords. For concreteness, let us suppose that in (9.15)

pr◦un(sn, t) converges to c(t); the case c(1− t) is similar. We argue by contradiction:

if lims→∞ pr◦un(s, t) does not converge to c(t) , then we can find another subsequence

s′n → ∞ so that limn→∞ pr ◦ un(s′n, t) converges to a different Reeb chord c′(T ′t).

By further taking subsequences, we may suppose that sn < s′n < sn+1. We consider

pr◦un(s,−) for s ∈ [sn, s
′
n] as a path of chords joining pr◦un(sn,−) and pr◦un(s′n,−).

Since c(t) is assumed to be a non-degenerate Reeb chord, there is a C1 neighborhood

U of t 7→ c(Tt) (in the space of chords of Λ) so that the only Reeb chord in Ū is c.

The C1 topology is metrizable, and hence we can find a smaller open set U ′ so that

c ∈ U ′, Ū ′ ⊂ U .

Since (Ū ′)c is open around c′ and U ′ is open around c, eventually pr ◦ u(sn,−) ∈ U ′

and pr ◦ u(s′n,−) ∈ (Ū ′)c. Then we conclude s′′n ∈ (sn, s
′
n) so that pr ◦ u(s′′n,−) lies in

U U ′.

By the same argument leading to (9.15), some subsequence of pr ◦ u(s′′n,−) must

converge to a map t 7→ c′′(T ′′t) for some Reeb chord c′′; moreover pr ◦ u(s′′n,−)

converges in Ū U ′. This contradicts the construction of Ū U ′.
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Therefore lims→∞ distC∞(s)(u(s, t), c(t)) = 0, as desired.

The argument for orbits is similar, except one can only conclude that

lim
s→∞

inf
t0∈R/Z

distC∞(s)(u(s, t), c(t+ t0)) = 0,

as desired. This completes the proof of 9.4.

9.4.1. Non-degeneracy and nearby Reeb chords/orbits. To see why, non-degeneracy of

a chord implies the chord is isolated in the C1 topology, we can argue geometrically

as follows. If ck(−) was a sequence of different Reeb chords converging to c(−) in C1

then (i) the periods Tk of ck converge to T and (ii) the starting points ck(0) converge

to c(0). This implies that the points (Tk, ck(0)) ∈ R × Λ lie in the inverse image

φ−1(Λ) for the Reeb flow φ. However, the transversality assumption implies that

(T, c) ∈ φ−1(Λ) is an isolated point of φ−1(Λ). This contradicts the convergence of

the sequence (Tk, ck(0)).

A similar description is possible for orbits, but we can also argue using the definition

of linearized operator from §3.3. Recall that if another Reeb orbit c1 is sufficiently

C1 close to a fixed orbit c0, then we can reparametrize c1 = Φt(η(t)), where η solves

the non-linear equation η′(t) + Πt(η(t))Φ
′(η(t)).

Then, by definition of linearization, we conclude that:

η′(t)− JS(t)η(t) = B(η) · η(t) · η(t),

where A = −J∂t − S(t) is a non-degenerate asymptotic operator. Then, if we can

find a sequence of solutions cn which converge in C1 to c0, then we can rescale the

resulting ηn to obtain a non-trivial element in the kernel of A, which we assume is

impossible. The only possibility is if ηn = 0 holds identically, in which case cn is a

reparametrization of c0.



Chapter 10

Exponential decay

Let σ, τ, x be the coordinates from Remark 4.2, centered on a non-degenerate Reeb

orbit or chord c. We say that σ, τ form the tangential coordinates, while x forms the

transverse coordinate.

Suppose that σ, τ, x are the coordinates of a holomorphic map u : [s0, s1]×S → R×Y ,

where S = R/Z or S = [0, 1]. In the latter case, we suppose that u takes boundary

on Λ, which is equivalent to τ = 0 on [s0, s1]× {0, 1}.

Let f̄ denote the average
∫ 1

0
fdt, and let σ0 = σ̄(s∗) for s∗ = 1

2
(s0 + s1). In the

S = [0, 1] case, set τ0 = 0, while in the S = R/Z case set τ0 = τ̄(s∗).

We have the following exponential convergence result:

Theorem 10.1. For ϵ > 0 sufficiently small, there exists Mk = o(1) as ϵ→ 0 so the

following holds. Whenever σ, τ, x are the coordinates of a holomorphic curve u, and

τ, x are Ck+1 ϵ-small, the following estimate holds:

ℓ∑
k=0

∣∣∇ℓx
∣∣+ ∣∣∇ℓ(τ − τ0)

∣∣+ ∣∣∇ℓ(σ − σ0)
∣∣ ≤Mk(e

−δ(s−s0) + e−δ(s1−s)),

for all s ∈ [s0, s1]. Here δ > 0 depends only on the asymptotic operator A.

We give the proof at the end of §10.7.5.

10.1. The PDE near an orbit or chord

As explained in the proof of Lemma 4.7, we have the following equations

(10.1)

∂sσ − ∂tτ = E11 · τ · ∂tx+ E12 · x · x+ E13 · x · ∂tx+ E14 · x · τ

∂tσ + ∂sτ = E21 · τ · ∂tx+ E22 · x · x+ E23 · x · ∂tx+ E24 · x · τ

∂sx+ J∂tx+ S(t)x = E31 · τ · ∂tx+ E32 · x · x+ E33 · x · ∂tx+ E34 · x · τ.

where Eij are all smooth tensor valued functions of τ, x. For future use, we let:

Rj = Ej1 · τ · ∂tx+ Ej2 · x · x+ Ej3 · x · ∂tx+ Ej4 · x · τ.

149
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10.2. Differential inequality for the transverse coordinate

In this section we prove a differential inequality for the x coordinate.

Lemma 10.2. Suppose that σ, τ, x solve the above holomorphic curve equation

(10.1). Let γ(s) = 1
2
∥x∥2. There exists ϵ > 0 with the following property. Sup-

pose that τ and x are C2 ϵ-small on [s0, s1] × S, where S = R/Z or S = [0, 1], and

that the asymptotic operator A = −J∂tx− S(t)x is non-degenerate. Then

γ′′(s)− d2γ(s) ≥ 1

3
(∥∂sx∥2 + ∥A(x)∥2),

where d = d(A) > 0 is the largest constant so that d2 ∥ξ∥2 ≤ 1
3
∥A(ξ)∥2.

Proof. A straightforward computation establishes that

γ′′(s) = ∥∂sx∥2 + ⟨x, ∂s∂sx⟩.

We replace ∂sx = Ax+R3, to obtain

⟨x, ∂s∂sx⟩ = ⟨x,A∂sx+ ∂sR3⟩ = ⟨x,A∂sx⟩+ ⟨x, ∂sR3⟩,

where we have used the fact that A is s-independent. Since x and ∂sx both take

boundary values in Rn, (or we are on R/Z), we can use the self-adjointness of A to

conclude

⟨x,A∂sx⟩ = ⟨Ax, ∂sx⟩ = ∥Ax∥2 + ⟨Ax,R3⟩.

Applying d2 ∥x∥2 ≤ 1
3
∥Ax∥2, we conclude:

γ′′ − d2γ ≥ 1

3
(∥∂sx∥2 + ∥Ax∥2) + (

2

3
∥∂sx∥2 +

1

3
∥Ax∥2 + ⟨Ax,R3⟩+ ⟨x, ∂sR3⟩).

Thus, in order to prove the lemma, it is sufficient to prove that

(10.2) |⟨Ax,R3⟩+ ⟨x, ∂sR3⟩| ≤
1

3
(∥Ax∥2 + 2 ∥∂sx∥2),

provided the C2 sizes of x and τ are less than ϵ. We will now proceed to do this. It

is fairly easy to estimate:

|⟨Ax,R3⟩| ≤
1

9
∥Ax∥2 ,

provided ϵ is sufficiently small (using ∥x∥W 1,2 ≤ CA ∥Ax∥ since A : W 1,2 → L2 is an

isomorphism).

It is similarly easy to estimate:

|⟨x, ∂s(E31 · τ) · ∂tx+ ∂s(E32x · x+ E33x · ∂tx+ E34τ · x)⟩| ≤
1

9
∥Ax∥2 + 1

9
∥∂sx∥2 ,

one uses Cauchy-Schwarz, 2 ∥a∥ ∥b∥ ≤ ∥a∥2 + ∥b∥2, and ∥x∥W 1,2 ≤ CA ∥Ax∥L2 .
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The remaining term involves second derivatives of x and needs to be integrated by

parts. We have

⟨x,E31 · τ · ∂t∂sx⟩ = −⟨∂tx,E31 · τ · ∂sx⟩ − ⟨x, ∂t(E31 · τ) · ∂sx⟩.

In the R/Z case we can always integrate by parts. In the [0, 1] case we use the fact

that τ vanishes at both endpoints. Then it is clear that both terms can be bounded

above by 1
9
(∥Ax∥2 + ∥∂sx∥2). Combining everything gives (10.2), and this completes

the proof. □

10.3. The relationship between γ′′ − δ2γ and exponential estimates.

There are many results in the theory of holomorphic curves which involve quanti-

ties decaying exponentially. Many of these results begin by establishing an estimate

involving the combination γ′′ − δ2γ, and usually γ is the L2 size (squared) of some

quantity. We give four examples from the literature, arranged chronologically:

(i) In [Flo89b, Lemma 5.2], Floer establishes an estimate of the form

(10.3) γ′′(s)− δ2γ(s) ≥ 0

for a certain quantity γ : R → [0,∞). Since γ is non-negative and defined on all R,
γ must be identically zero. This is part of the argument Floer uses to show that the

Floer homology of L with Lf (the graph of df in T ∗L) can be computed in terms of

the Morse complex of f .

(ii) In [Sal97, Lemma 2.11], Salamon considers the quantity

γ(s) :=
1

2

∫ 1

0

|ξ(s, t)|2 dt

where ξ(s, t) solves an equation of the form ∂sξ+J0∂tξ+S(t)ξ = 0. He then shows that

γ satisfies (10.3) for s sufficiently large, using the assumption that ξ 7→ J0∂tξ +S(t)ξ

is an isomorphism. Salamon then shows that γ(s) decays exponentially with rate δ,

for s sufficiently large.

(iii) In [RS01, Lemma 3.1], Robbin-Salamon consider a function γ : [0,∞) → R+

satisfying inequality of the form

γ′′(s)− δ2γ(s) ≥ −c0e−ϵs.

The authors use to show that γ(s) decays exponentially with rate δ, provided ϵ > δ.

(iv) In [HWZ02, Lemma 3.6], Hofer-Wysocki-Zehnder consider the L2 size

γ(s) =

∫
R/Z

|z(s, t)|2 dt,
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where z is a R2n−2-valued coordinate near a Reeb orbit measuring the directions

transverse to ∂σ and R. They show that γ : [−r, r] → R+ satisfies the estimate

(10.3). The authors then use (10.3) to show that γ(s) ≤ Ae−δ(r+s) + Be−δ(r−s) for

appropriately chosen constants A,B.

We will prove the following lemma:

Lemma 10.3. Let γ : [−r, r] → R+, α : [−r, r] → R+ and κ : [−r, r] → R+ be

smooth functions satisfying

(10.4) γ′′ − δ2γ ≥ α− κ,

for some constant δ > 0. Suppose that κ ≤ K1e
−D(r+s) +K2e

−D(r−s) for K1, K2 ≥ 0

and D > δ. Then

γ ≤ C1e
−δ(r+s) + C2e

−δ(r−s) and

∫ s+0.5

s−0.5

α(s) ds ≤ A1e
−δ(r+s) + A2e

−δ(r−s),

where the inequality involving α holds only for s ∈ [−r+1, r−1], while the inequality

involving γ holds for all s ∈ [−r, r]. The constants are given by

C1 = γ(−r) + K1 +K2e
−2Dr

D2 − δ2

C2 =
γ′(r)− δγ(r)

2δ
+

K2

2δ(D − δ)
.

Ai = eδ(40 + 2δ2)Ci + 2eDKi

−r r0

Figure 1. Plots of C1e
−δ(r+s)+C2e

−δ(r−s) for various values of C1 and
C2. The values C1, C2 are the values taken by the function at the left
and right endpoints, respectively.

Proof. We begin by introducing the function

β := γ −Be−δ(r−s) +
K1

D2 − δ2
e−D(r+s) +

K2

D2 − δ2
e−D(r−s),

for a constant B to be determined at a later stage. It is straightforward to observe

that

β′′ − δ2β = γ′′ − δ2γ +
[
K1e

−D(r+s) +K2e
−D(r−s)

]
≥ α ≥ 0.
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The trick now is to observe that

(10.5)
d

ds
(e−δs(β′ + δβ)) ≥ 0 =⇒ e−δs(β′ + δβ) is increasing.

Now we will pick the constant B > 0 so that β′ + δβ is non-positive at the right

endpoint s = r. We compute

β′(r) + δβ(r) = γ′(r) + δγ(r)− 2δB +
(D + δ)K2 − (D − δ)K1e

−2Dr

D2 − δ2
.

Therefore

β′(r) + δβ(r) ≤ γ′(r) + δγ(r) +
K2

D − δ
− 2δB.

This leads us to make the choice

B =
γ′(r) + δγ(r)

2δ
+

K2

2δ(D − δ)
.

With this choice of B we can conclude from (10.5) that β′(s) + δβ(s) ≤ 0 holds for

all s.

Then we can integrate β′(s) + δβ(s) ≤ 0 to conclude

eδsβ(s) ≤ e−δrβ(−r) for s ∈ [−r, r].

Thus β(s) ≤ e−δ(r+s)β(−r), and hence

γ(s) ≤ β(−r)e−δ(r+s) +Be−δ(r−s).

We estimate β(−r) as follows

β(−r) ≤ γ(−r) + K1 +K2e
−2Dr

D2 − δ2
=: C1.

We set C2 = B. This completes the first part of the proof.

To estimate the integral
∫ s+0.5

s−0.5
α(s) ds, we will use a convolution trick. We introduce

a smooth symmetric bump function ρ which is supported in (−1, 1) and which equals

1 on [−0.5, 0.5], as shown in Figure 2.

0.5−0.5 1−1

Figure 2. The bump function ρ. We have ∥ρ∥L1 ≤ 2. Moreover, this
can be achieved with ∥ρ′′∥L2 ≤ 4π2 + ϵ ≤ 40, because one can take
a smooth ϵ-approximation of the C2 function 0.5− 0.5 cos(2πx) which
interpolates from 0 to 1 over an interval of size 0.5 (we need two copies
of this function).
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We convolve both sides of (10.4) with ρ, yielding

(ρ′′) ∗ γ − δ2(ρ ∗ γ) ≥ ρ ∗ α− ρ ∗ κ.

This holds only on the restricted domain s ∈ [−r+1, r−1]. For functions f supported

in [−1, 1] it is simple to estimate

|f ∗ γ| (s) ≤ max
s′∈[s−1,s+1]

|γ(s)| ∥f∥L1 ≤ eδ ∥f∥L1 (C1e
−δ(r+s) + C2e

−δ(r−s)).

A similar conclusion holds with γ replaced by κ. We conclude

ρ ∗ α(s) ≤ eδ(∥ρ′′∥L1 + δ2 ∥ρ∥L1)(C1e
−δ(r+s) + C2e

−δ(r−s))

+ eD ∥ρ∥L1 (K1e
−D(r+s) +K2e

−D(r−s)).

Using the fact that D > δ, and ∥ρ∥L1 ≤ 2 and ∥ρ′′∥L1 ≤ 40, we obtain

ρ ∗ α(s) ≤
[
eδ(40 + 2δ2)C1 + 2eDK1

]
e−δ(r+s) +

[
eδ(40 + 2δ2)C2 + 2eDK2

]
e−δ(r−s).

Setting Ai := eδ(40 + 2δ2)Ci + 2eDKi, we conclude∫ s+0.5

s−0.5

α(s) ds ≤ ρ ∗ α(s) ≤ A1e
−δ(r+s) + A2e

−δ(r−s).

This completes the proof. □

Remark 10.4. A simpler proof in the case when κ = α = 0 (with different constants

C1, C2) is possible using a slightly different argument: observe that β = γ−c cosh(δs)
satisfies β′′−δ2β ≥ 0, and hence cannot attain a positive interior maximum. Thus if c

is chosen so that β is non-positive at both endpoints, then β must be everywhere non-

positive, hence γ ≤ c cosh(δs), as desired. This is the argument used in [HWZ02,

Lemma 3.6].

10.4. Exponential estimates on theW 1,2 norm of the transverse coordinates

Throughout this section let u : [s0, s1]× S → R× Y be a holomorphic curve so that

pr ◦ u(s, t) remains sufficiently close to the non-degenerate Reeb chord c so that the

differential inequality from §10.2 can be applied.

We have the following result:

Lemma 10.5. Let ϵ, d be the constants from Lemma 10.2, and suppose that x, τ are

C2 ϵ-small on [s0, s1]. Then there is a constant C, depending only on the asymptotic

operator A, so that:

(10.6)

∫ s+0.5

s−0.5

∫ 1

0

|x|2 + |∂sx|2 + |∂tx|2 dsdt ≤ C ∥x∥2C1 (e
−d(s−s0) + e−d(s1−s)),

for s ∈ [s0 + 0.5, s1 − 0.5].
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Proof. Note that the estimate holds for s ∈ [s0+0.5, s0+1]∪ [s1−1, s1−0.5], simply

by making C larger than 3/e−d.

For the other regions, we will apply Lemma 10.3 to the differential inequality from

§10.2. In this case we have κ = 0, and we conclude that for s ∈ [s0 + 1, s1 − 1] that∫ s+0.5

s−0.5

∥∂sx∥2 + ∥A(x)∥2 ≤ c1(x)[e
−d(s−s0) + e−d(s1−s)],

where

c1(x) = 3ed(40 + 2d2)γ(−s0 − 1) + 3(40 + 2d2)ed
γ′(s0 + 1)− dγ(s0 + 1)

2d
.

It is clear that c1(x) ≤ C1 ∥x∥2C1 , where C1 is independent of ϵ. Since C1 depends on

d, it implicitly depends on the asymptotic operator A.

Next we use ∥x∥2 + ∥∂tx∥2 ≤ CA ∥A(x)∥2, and conclude that∫ s+0.5

s−0.5

∥x∥2 + ∥∂sx∥2 + ∥∂tx∥2 ds ≤ C ∥x∥2C1 [e
−d(s−s0) + e−d(s1−s)],

for a modified constant. This completes the proof. □

Corollary 10.6. Assume that σ, τ, x solve (10.1) and x, τ are C2 ϵ-small on [s0, s1]×
S. Write:

∥x∥W 1,2,1(s0,s1)
:=

∫ s1

s0

∥x∥+ ∥∂sx∥+ ∥∂tx∥ ds

Then ∥x∥W 1,2,1(s0,s1)
< C1 ∥x∥C1 where C1 is independent of s0, s1. Keep in mind that

∥−∥ denotes the L2 norm over S. Moreover, if we write:

∥x∥W 1,1(s0,s1)
:=

∫ s1

s0

∫ 1

0

|x|+ |∂sx|+ |∂tx| dtds

Then ∥x∥W 1,1(s0,s1)
< C2 ∥x∥C1 where C2 is independent of s0, s1.

Proof. We begin by proving the estimate on the mixed norm. We have:∫ s0+k+0.5

s0+k−0.5

∥x∥+ ∥∂sx∥+ ∥∂tx∥ ds ≤ c[

∫ s0+k+0.5

s0+k−0.5

∥x∥2 + ∥∂sx∥2 + ∥∂tx∥2 ds]1/2.

This can be proved by Cauchy-Schwarz and estimating (∥x∥+ ∥∂sx∥+ ∥∂tx∥)2. The
exponential estimates give:∫ s0+k+0.5

s0+k−0.5

∥x∥2 + ∥∂sx∥2 + ∥∂tx∥2 ds ≤ C ∥x∥2C1 (e
−dk + e−d(s1−s0+k)).

Taking square roots and using the above estimate, we have∫ s0+k+0.5

s0+k−0.5

∥x∥+ ∥∂sx∥+ ∥∂tx∥ ds ≤ C ′ ∥x∥C1 (e
−dk/2 + e−d(s1−s0+k)/2).
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It is easy to see that this sum is finite, and bounded independently of s0, s1. This

completes the proof of the first part.

For the second part, we simply use the fact that
∫ 1

0
|f | dt ≤ ∥f∥. □

10.5. Uniform convergence for the tangential coordinates

Suppose throughout this section that σ, τ, x solves (10.1) on [0,∞)× S.

Proposition 10.7. There exist two constants σ0, τ0 so that

(10.7) lim
s→∞

distC∞(s)(σ, σ0) + lim
s→∞

distC∞(s)(τ, τ0) = 0,

where distC∞(s) is the C
∞ distance for the restriction to [s− 1, s+ 1]× S.

Proof. This uses a trick I learned from [Bou02, §3].

We know that from the bubbling analysis that, for any sequence sk → ∞, there is a

further subsequence and constants σ0, τ0 (depending on the subsequence), so that

lim
ℓ→∞

distC∞(sk)(σ, σ0) + distC∞(sk)(τ, τ0) = 0.

Let us abbreviate the above by saying that σ(sk, t), τ(sk, t) converges to σ0, τ0.

If we can show that there are σ0, τ0 so that every sequence has a convergent subse-

quence with the same limits σ0, τ0, then (10.7) follows. This argument is called the

subsequence trick, and we assume the reader is familiar with it.

Rotate the coordinate system, if necessary, so that τ has 0 as limit point (i.e., τ0 = 0

is a limit for some subsequence).

The trick is to integrate the first two equations of (10.1) over [s0, s1]×S to conclude:

(10.8)

∫ 1

0

σ(s1, t)− σ(s0, t)dt ≤ C ∥x∥W 1,1(s0,s1)
,

and

(10.9)

∫ 1

0

τ(s1, t)− τ(s0, t)dt+

∫ s1

s0

σ(s, 1)− σ(s, 0)ds ≤ C ∥x∥W 1,1(s0,s1)
.

Corollary 10.6 implies ∥x∥W 1,1(s0,s1)
≤ C ∥x∥C1 , where C does not depend on the size

of the domain.

Thus the left hand sides of (10.8) and (10.9) converge to zero whenever sn0 , s
n
1 both

converge to ∞, and the C2 size of x, τ remains ϵ-small on [sn0 , s
n
1 ].

We can find a sequence sn0 , s
n
1 where σ(sn0 , t), τ(s

n
0 , t) converges to σ0, 0 and sn1 is the

largest number so that the C2 size of x, τ remains ϵ small on [sn0 , s
n
1 +1]. In particular,

there must be some point so that the C2 size of x, τ is at least ϵ/2.
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A subsequence of σ(sn1 , t) must converge to σ′
0. But clearly we must have σ′

0 = σ0,

by (10.8). Similarly, a subsequence of τ(sn1 ,−) must converge to 0 in distC∞(sn1 )
,

by (10.9), but this contradicts the fact that the C2 size was at least ϵ/2. Thus we

conclude that we can take sn1 to be any number larger than sn0 . It follows by the

subsequence argument that the s→ ∞ limit of σ, τ is unique, and hence (10.7) holds,

as desired. □

The above argument also shows that the average of σ converges exponentially to σ0,

and a similar result for τ .

Corollary 10.8. Let δ := d/2. Suppose that x, τ are ϵ C2-small on [s0, s1]×S. Then

|σ̄(s)− σ̄(s∗)dt| ≤ C ∥x∥C1 (e
−δ(s−s0) + e−δ(s1−s)),

and, if S = R/Z,

|τ̄(s)− τ̄(s∗)dt| ≤ C ∥x∥C1 (e
−δ(s−s0) + e−δ(s1−s)),

where s∗ =
1
2
(s0 + s1) and f̄ is the average of f .

Proof. Without loss, suppose s < s∗. The above argument implies that

|σ̄(s)− σ̄(s∗)dt| ≤ C ∥x∥W 1,1(s,s∗)
.

Cover [s, s∗] × S by finitely many intervals I of the form [s′ − 0.5, s′ + 0.5] and for

each apply the exponential estimate to conclude:

∥x∥W 1,1(I) ≤ C1 ∥x∥W 1,2(I) ≤ C2 ∥x∥C1 (e
−δ(s′−s0) + e−δ(s1−s′)).

To get the full W 1,1 norm over [s, s∗], we need to sum the above for all s′ in “lattice”

of step length 1 contained in [s, s∗]. We can estimate this from above as

∞∑
k=0

e−δ(s−s0+k) +
∞∑
k=0

e−δ(s1−s∗−k) ≤ C3[e
−δ(s−s0) + e−δ(s1−s∗)] ≤ 2C3e

−δ(s−s0).

A similar argument works when s∗ < s, but with e−δ(s1−s) instead. Adding the two

estimates concludes the desired result. The same argument works for τ in the R/Z
case, using that σ(s, 0) = σ(s, 1). □

Remark 10.9. Henceforth, we will typically denote σ̄(s∗) = σ0 and τ̄(s∗) = τ0.

10.6. Ck exponential estimates on the transverse coordinate.

The goal in this section is to establish Ck exponential estimates on x. The key

idea is to bootstrap the W 1,2 exponential estimates in Lemma 10.5 to establish Ck

exponential estimates on x.
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10.6.1. Elliptic bootstrapping. We will need to use the following linear elliptic esti-

mates for ∂̄ = ∂s + J0∂t and ∆ = ∂2s + ∂2t .

Lemma 10.10. Consider a sequence 0.5 = ρ0 > ρ1 > ρ2 > · · · > 0.1. Abbreviate

the domains Ωk = [−ρk, ρk]× S. There exist constants Lk so that for k ≥ 1

(10.10) ∥x∥Wk,2(Ωk)
≤ Lk(

∥∥∂̄x∥∥
Wk−1,2(Ωk−1)

+ ∥x∥Wk−1,2(Ωk−1)
)

for every smooth function x : Ω0 → R2n, with x(s, 0), x(s, 1) ∈ Rn when S = [0, 1].

Similarly there are constants ck so that for k ≥ 2

(10.11) ∥τ∥Wk,2(Ωk)
≤ Lk(∥∆τ∥Wk−2,2(Ωk−1)

+ ∥τ∥Wk−1(Ωk−1)
)

for every smooth function τ : Ω0 → R, with τ(s, 0) = τ(s, 1) = 0 when S = [0, 1].

Proof. We prove the case when S = [0, 1], leaving the easier S = R/Z case to the

reader.

First we prove the elliptic estimate for ∂̄, following [RS01, Lemma C.1]. If x has

compact support with Rn boundary conditions, we compute∫
Ωk−1

∣∣∂̄x∣∣2 = ∫
Ωk−1

|∂sx|2 + |∂tx|2 dsdt.

Now let βk be a bump function which is 1 on Ωk and supported in Ωk−1, and compute

∥x∥W 1,2(Ωk)
≤ ∥βx∥W 1,2(Ωk−1)

≤ ∥βx∥L2(Ωk−1) + ∥d(βx)∥L2(Ωk−1)

≤ ∥βx∥L2(Ωk−1)
+
∥∥(∂̄β)x∥∥

L2(Ωk−1)
+
∥∥β∂̄(x)∥∥

L2(Ωk−1)

≤ ck(
∥∥∂̄x∥∥

L2(Ωk−1)
+ ∥x∥L2(Ωk−1)

).

A similar estimate holds with x replaced by ∇ℓx (since ∂̄ commutes with derivatives).

Summing over ℓ = 0, · · · , k − 1 we conclude

∥x∥Wk,2(Ωk)
≤ Lk(

∥∥∂̄x∥∥
Wk−1,2(Ωk−1)

+ ∥x∥Wk−1,2(Ωk−1)
),

as desired.

To establish the elliptic estimate for ∆τ , we insert an intermediate domain Ωk ⊂ Ω′ ⊂
Ωk−1 and compute

∥iτ∥Wk,2(Ωk)
≤ c′(

∥∥∂̄iτ∥∥
Wk−1,2(Ω′)

+ ∥iτ∥Wk−1,2(Ω′)).

Observe that ∂ = ∂s − J0∂t is conjugate to ∂̄, and hence satisfies the same elliptic

estimates. Since ∂̄(iτ) is real along the boundary, we can apply these estimates to

∂̄(iτ). Thus ∥∥∂̄τ∥∥
Wk−1,2(Ω′)

≤ c′′(
∥∥∂∂̄τ∥∥

Wk−2,2(Ωk−1)
+
∥∥∂̄τ∥∥

Wk−2,2(Ωk−1)
).
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It is easy to see that ∂∂̄ = ∆, and hence the combination of our two estimates yields

the desired result (10.11). □

10.6.2. Bootstrapping the estimate for the transverse coordinate. The main result of

this section is the following exponential estimate on the x coordinate:

Lemma 10.11. There is Ck > 0 so that for ϵ > 0 sufficiently small we have the

following: Suppose that x, σ, τ solve (10.1) and x, τ are Ck+1 ϵ-small on [s0, s1]. Then:

k∑
ℓ=1

∣∣∇ℓx(s, t)
∣∣ ≤ Ck ∥x∥C1 (e

−δ(s−s0) + e−δ(s1−s)),

for s ∈ [s0 + 0.5, s1 − 0.5], where δ = 1
2
d.

We can easily modify the statement to get an estimate which holds on all of [s0, s1],

although this modification obscures the fact that the first derivatives of x control the

higher derivatives on the interior.

Corollary 10.12. For ϵ > 0 sufficiently small there is Dk = o(1) as ϵ→ 0 satisfying

the following. Suppose that x, σ, τ solve (10.1) and x, τ are Ck+1 ϵ-small on [s0, s1].

Then:
k∑

ℓ=1

∣∣∇ℓx(s, t)
∣∣ ≤ Dk(e

−δ(s−s0) + e−δ(s1−s)),

for s ∈ [s0, s1]. □

Proof. The estimate is trivial to establish on the ends [s0, s0 + 1] ∪ [s1 − 1, s1] (i.e.,

we can pick Dk = ϵ), and hence it suffices to establish the estimate on the interior

interval [s0 + 1, s1 − 1].

Fix some s ∈ [s0 + 0.5, s1 − 0.5], and let Ωk = [s− ρk, s+ ρk]× S, as in §10.6.1. The
holomorphic curve equation for x implies that:

∂̄x = −S(t)x+R3.

It is straightforward to estimate ∥R3∥W 1,2(Ω1)
≤ o(1) ∥x∥W 2,2(Ω1)

as ϵ → 0. One

inspects (10.1) and uses estimates of the form ∥a · b · c∥Wk,2 ≤ ∥a∥Ck ∥b∥Ck ∥c∥Wk,2 ,

etc.

Hence, for ϵ sufficiently small we can estimate:∥∥∂̄x∥∥
W 1,2(Ω1)

≤ C ∥x∥W 1,2(Ω1)
+ o(1) ∥x∥W 2,2(Ω1)

,

where C depends on S(t). Then we apply the elliptic estimates to conclude:

∥x∥W 2,2(Ω2)
≤ 2L2C ∥x∥W 1,2(Ω1)

.
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Continuing in this fashion, we conclude, up to ∥R3∥Wk+1,2(Ω1)
≤ o(1) ∥x∥Wk+2,2(Ω1)

as

ϵ→ 0, which yields:

∥x∥Wk+2,2(Ωk+2)
≤ 2k+1Lk+2 · · ·L2C

k+1 ∥x∥W 1,2(Ω1)
,

provided ϵ is sufficiently small.

Lemma 10.5 then yields:

∥x∥W 1,2(Ω1)
≤ C ∥x∥C1 (e

−δ(s−s0) + e−δ(s1−s)),

Finally, the Sobolev embedding theorem yields

∥x∥Ck(Ωk+2)
≤ Dk ∥x∥C1 (e

−δ(s−s0) + e−δ(s1−s)),

where Dk depends only on S(t), the constants L1, . . . , Lk+2, and the constant from

the Sobolev embedding theorem. Since (s, t) lies in Ωk+2, we conclude the desired

result. □

10.7. Exponential convergence for the tangential coordinates

In this section we prove exponential decay estimates for the τ and σ coordinate. The

argument splits into two cases, depending on whether S = [0, 1] or S = R/Z.

10.7.1. Differential inequality for τ when S = [0, 1]. The idea is to prove that τ

satisfies a differential inequality for which we can apply Lemma 10.3.

Lemma 10.13. Introduce the quantity:

Γ(s) =
1

2

∫ 1

0

|τ(s, t)|2 dt.

There is c > 0 (depending only on the constant from the Poincaré lemma for [0, 1])

and ϵ > 0 with the following property: if the C2 sizes of x, τ is less than ϵ, then

(10.12) Γ′′(s)− c2Γ(s) ≥ 1

3
(∥∂sτ∥2 + ∥∂tτ∥2 − ∥A(x)∥2).

Proof. The proof uses the Poincaré inequality for functions on [0, 1] which vanish on

both endpoints. In particular, there is a constant c so that:

c2

2
∥τ∥2 ≤ 1

3
∥∂tτ∥2 .

Using the holomorphic curve equations (10.1), we compute

Γ′′(s) = ∥∂sτ∥2 + ⟨τ, ∂s∂sτ⟩ = ∥∂sτ∥2 − ⟨τ, ∂t∂sσ⟩+ ⟨τ, ∂sR2⟩

= ∥∂sτ∥2 + ⟨∂tτ, ∂sσ⟩+ ⟨τ, ∂sR2⟩ = ∥∂sτ∥2 + ∥∂tτ∥2 + ⟨∂tτ, R1⟩+ ⟨τ, ∂sR2⟩,
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We have used the fact that τ vanishes on both endpoints in order to do the integration

by parts.

We easily estimate (by inspecting (10.1)):

|⟨∂tτ, R1⟩| ≤
1

6
(∥∂tτ∥2 + ∥A(x)∥2),

provided the C0 sizes of x, τ are sufficiently small.

Similarly, we estimate:

|⟨τ, ∂sR2⟩| ≤
1

6
(∥∂tτ∥2 + ∥∂sτ∥2 + ∥A(x)∥2),

provided the C2 sizes of τ and x are sufficiently small, using the Poincaré inequality

when we need to estimate terms involving ∥τ∥2.

Then we conclude:

Γ′′(s)− c2Γ(s) ≥ 1

3
(∥∂sτ∥2 + ∥∂tτ∥2 − ∥A(x)∥2),

as desired. □

10.7.2. Differential inequality for τ when S = R/Z. The analogous differential in-

equality in the case S = R/Z is a bit harder to establish, since we cannot apply the

Poincaré inequality to τ . However, we know from Corollary 10.8 that the mean of τ

converges exponentially to 0. Therefore, it suffices to establish a differential inequality

for

f(s, t) = τ(s, t)− τ̄(s)

There is a Poincaré inequality for functions with mean 0, and hence there is hope

that we can argue as we did in the previous section. We compute:

∂sf = −∂tσ +R2 −
∫ 1

0

R2 =: −∂tσ +R′
2 and ∂tf = ∂sσ +R1.

Then we conclude:

Lemma 10.14. Introduce the quantity: Γ(s) = 1
2

∫ 1

0
|f(s, t)|2 dt. There is c > 0

(depending only on the constant from the Poincaré lemma for R/Z) and ϵ > 0 with

the following property: if the C2 sizes of x, τ are less than ϵ, then

(10.13) Γ′′(s)− c2Γ(s) ≥ 1

3
(∥∂sf∥2 + ∥∂tf∥2 − ∥A(x)∥2 − ∥∂sx∥2).
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Proof. The argument is similar to the one in the previous section. We have

Γ′′(s) = ∥∂sf∥2 + ⟨f, ∂s∂sf⟩ = ∥∂sf∥2 − ⟨f, ∂t∂sσ⟩+ ⟨f, ∂s(R′
2)⟩

= ∥∂sf∥2 + ⟨∂tf, ∂sσ⟩+ ⟨f, ∂s(R′
2)⟩

= ∥∂sf∥2 + ∥∂tf∥2 + ⟨∂tf,R1⟩+ ⟨f, ∂s(R′
2)⟩,

Once again, it is easy to estimate:

|⟨∂tf,R1⟩| ≤
1

6
(∥∂tf∥2 + ∥A(x)∥2),

by inspection of the terms appearing in R1 from (10.1), provided that ϵ is sufficiently

small.

The harder term to estimate is the one involving ∂s(R
′
2). We have

(10.14) |⟨f, ∂s(R′
2)⟩| ≤

1

6
(∥∂sf∥2 + ∥∂tf∥2 + ∥A(x)∥2 + ∥∂sx∥2).

Most of the terms are straightforward to estimate, using the Poincaré inequality

whenever we need to estimate ∥f∥2 ≤ ∥∂tf∥2. For instance, one of the terms appearing

involves ∂s
∫ 1

0
R2, which can be estimated as follows:

⟨f, 1⟩
∫ 1

0

∂s(E34 · x · τ) ≤ C1 ∥f∥ (∥x∥+ ∥∂sx∥) ≤ C2(∥∂tf∥2 + ∥A(x)∥2 + ∥∂sx∥2),

where C1, C2 = o(1) as ϵ→ 0. Arguably the hardest term to estimate is:

⟨f, E31 · τ · ∂s∂tx−
∫ 1

0

E31 · τ · ∂s∂tx⟩.

However, we can integrate this term by parts to get the second derivatives off of x

and then bound the result by (10.14), as desired. Then, as in the previous section,

we conclude:

Γ′′(s)− c2Γ(s) ≥ 1

3
(∥∂sf∥2 + ∥∂tf∥2 − ∥A(x)∥2 − ∥∂sx∥2),

as desired. □

10.7.3. W 1,2 exponential estimates for the tangential coordinate. Suppose that x, τ

are C2 ϵ-small on [s0, s1]× S, so that the previous results apply. Then we have

Lemma 10.15. There exists a constant T which is o(1) as ϵ→ 0 so that the following

holds. If S = R/Z, and τ0 = τ̄(s∗), or S = [0, 1] and τ0 = 0, then∫ s+0.5

s−0.5

∫ 1

0

|τ − τ0|2 + |∂tτ |2 + |∂sτ |2 ≤ T (e−c(s−s0) + e−c(s1−s)).
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Proof. Appealing to either the differential inequality (10.12), in the case when S =

[0, 1], or (10.13), in the case when S = R/Z, we conclude that:

Γ′′(s)− c2Γ(s) ≥ 1

3
(∥∂sf∥2 + ∥∂tf∥2)− κ,

where f = τ or f = τ − τ̄ depending on whether S = [0, 1] or S = R/Z, and

κ ≤ D2
1 ∥x∥

2
C1 (e

−2δ(s−s0) + e−2δ(s1−s0)),

by appealing to the C1 exponential estimates in the previous section (note that the

C1 estimates hold on all of [s0, s1]). In particular, assuming that c < 2δ, shrinking it

if necessary, then we can apply Lemma 10.3 to conclude:∫ s+0.5

s−0.5

∥f∥2 + ∥∂sf∥2 + ∥∂tf∥2 ds ≤ T (e−c(s−s0) + e−c(s1−s)),

where T = o(1) as ϵ→ 0. However, ∂tf = ∂tτ , f = τ −
∫ 1

0
τ , and, ∂sf = ∂sτ −

∫ 1

0
R2,

which implies that:∫ s+0.5

s−0.5

∥τ − τ0∥2 + ∥∂sτ∥2 + ∥∂tτ∥2 ds ≤ T (e−c(s−s0) + e−c(s1−s)),

Here we have used:

∥f∥ ≤ ∥τ − τ0∥+ |τ̄ − τ0| ,

and Corollary 10.8, which asserts that:

|τ̄ − τ0| ≤ C ∥x∥C1 (e−δ(s−s0) + e−δ(s1−s)),

We conclude the desired result. □

Remark 10.16. Henceforth, let 2δ < c and 2δ < d, so that our results apply.

Thus we see that there are two conditions placed on δ, one comes from the spectral

properties of A (namely, d), while the other condition (namely, 2δ < c) comes from

the Poincaré inequality for R valued functions on [0, 1] with vanishing endpoints and

functions on R/Z with zero mean.

10.7.4. Bootstrapping the estimate for the tangential coordinate. We bootstrap the

previous exponential estimate on the τ coordinate.

Lemma 10.17. For each ϵ > 0 sufficiently small there is Tk = o(1) as ϵ → 0 with

the following property. Suppose that x, σ, τ solve (10.1) and x, τ are Ck+1 ϵ-small on

[s0, s1]. Then:
k∑

ℓ=1

∣∣∇ℓ(τ − τ0)(s, t)
∣∣ ≤ Tk(e

−δ(s−s0) + e−δ(s1−s)),

for s ∈ [s0, s1]. Moreover, Tk can be chosen o(1) as ϵ→ 0.
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Proof. As we argued previously, it suffices to establish the estimate on the interior

interval [s0 + 1, s1 − 1].

Fix some s ∈ [s0 + 1, s1 − 1], and let Ωk = [s − ρk, s + ρk] × S, as in §10.6.1. The

holomorphic curve equation for τ implies that:

∆(τ − τ0) = ∂sR2 − ∂tR1.

It is straightforward to estimate ∥∂sR2 − ∂tR1∥Wk,2(Ωk)
≤ o(1) ∥x∥Wk+2,2(Ωk)

as ϵ→ 0.

This only relies on having Ck+1 bounds on τ, x.

Hence,we can estimate:

∥∆(τ − τ0)∥Wk,2(Ωk)
≤ o(1) ∥x∥Wk+2,2(Ωk)

.

Then we apply the elliptic estimates for ∆ to conclude:

∥τ − τ0∥Wk+2,2(Ωk+2)
≤ o(1) ∥x∥Wk+2,2(Ωk+1)

+ Lk+2 ∥τ − τ0∥Wk+1,2(Ωk+1)
.

Continuing in this fashion,

∥τ − τ0∥Wk+2,2(Ωk+2)
≤ o(1) ∥x∥Wk+2,2(Ω1)

+ Lk+2 · · ·L2 ∥τ − τ0∥W 1,2(Ω1)
.

Applying the W 1,2 elliptic estimate for τ from §10.7.3, the W k+2,2(Ω1) estimate on x

from the proof of Lemma 10.10, and the Sobolev embedding theorem, we conclude

that

∥τ − τ0∥Ck(Ωk+2)
≤ Tk(e

−δ(s−s0) + e−δ(s1−s)),

where Tk = o(1) as ϵ→ 0, as desired. □

10.7.5. Exponential estimates on the σ coordinate. The goal in this section is to use

the equations (10.1), and the estimates on x, τ , to derive exponential estimates for σ.

We have the following result:

Lemma 10.18. For sufficiently small ϵ > 0, there exist constants Sk = o(1) as ϵ→ 0

so that the following holds. If x, τ are Ck+1 ϵ-small, then, for all s, t ∈ [s0, s1]× S we

have:
k∑

ℓ=0

∣∣∇ℓ(σ(s, t)− σ0)
∣∣ ≤ Sk(e

−δ(s−s0) + e−δ(s1−s)),

where σ0 is the average value of σ along the central circle s∗ =
1
2
(s0 + s1).

Proof. It is trivial to use (10.1) to estimate:

k∑
ℓ=1

∣∣∇ℓ(σ(s, t)− σ0)
∣∣ = k∑

ℓ=1

∣∣∇ℓ(σ(s, t))
∣∣ ≤ S ′

k(e
−δ(s−s0) + e−δ(s1−s)),
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for some S ′
k = o(1) as ϵ → 0. This is because the derivatives of σ can be expressed

entirely in terms of the derivatives of τ, x. The tricky part is estimating the ℓ = 0

term. We have:

|σ(s, t)− σ0| = |σ(s, t)− σ̄(s)|+ |σ̄(s)− σ̄(s∗)| .

The first term can be bounded in terms of ∂tσ, and hence the desired estimate holds

for this term. For the second term we appeal to Corollary 10.8 to conclude:

|σ̄(s)− σ̄(s∗)| ≤ C ∥x∥C0 (e
−δ(s−s0) + e−δ(s1−s)).

This completes the proof. □

Proof (of Theorem 10.1). One simply combines Lemmas 10.11, 10.17, and 10.18. □
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